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ABSTRACT 

Applying Bayesian analysis techniques, the paper shows 
that the position distribution can be derived from the 
measurement data as a weighed sum of error distributions, 
in which the weights depend both on the measurement 
residuals, the statistical properties of the measurements 
and the a priori probabilities of failure. This description is 
not only elegant in the insight it provides on the 
‘distribution’ of integrity over the different measurements, 
but also offers major operational benefits over existing 
methods. Unlike with currently available methods, the 
exact probability of hazardously misleading information 
P(HMI) is readily derived, while the processing scheme is 
simpler than for traditional fault detection based 
architectures. Secondly, the method makes it particularly 
easy to identify the exact contribution of each individual 
measurement to P(HMI), which simplifies the 
identification and removal of erroneous measurements. 
Finally, it becomes viable to do fault-tolerant position 
estimation in a way similar to the one described in [12] by 
a straight-forward minimization of P(HMI). 
 
1. INTRODUCTION 

Integrity and continuity requirements for aircraft precision 
approach and landing are extremely stringent. In such an 
operational environment, it is important to exploit all 
available information to the fullest possible extent to 
assess system integrity as accurately as possible - to avoid 
both being optimistic (compromising integrity) and 
conservative (sacrificing continuity).  
 
To this end, a new method has been developed for failure 
mitigation. It allows for a unified treatment of the system 
both in the absence and presence of failures, in contrast to 
the situation for currently available fault detection based 
algorithms. This simplifies computations and gives a more 
accurate assessment of system integrity. 

 
The paper is organized in the following manner. After a 
brief introduction on navigation performance requirements 
and a description of the system model used, a short 
overview of currently available fault detection and 
exclusion (FDE) algorithms is presented, with a stress on 
the difficulties of FDE to obtain accurate performance 
measures. It is then shown how Bayesian techniques can 
be exploited to overcome these problems, and how they 
can be applied in a Local Area Augmentation System 
(LAAS). Because the method resembles the multiple 
hypothesis approach from [12], results are compared to 
those described in that paper. It is thus shown that because 
the multiple hypothesis approach doesn’t exploit the fact 
that the measurements contain information on the 
likelihood of a possible failure, it may lead to overly 
optimistic results.  
 
2. PARAMETER ESTIMATION PERFORMANCE 

Due to the random behavior of most error sources in a 
GNSS system, the parameters it provides for navigation 
are random as well and can therefore best be described by 
a probability density function (pdf). For LAAS, the 
parameters of interest are the pseudorange corrections at 
the ground station, and the position at the aircraft. 
 
It has become a custom to capture the most important 
characteristics of the pdf in two different values. The first 
parameter is accuracy and describes the ‘bulk 
performance’ that is usually dominated by small, noisy 
error sources that are always present in the system. It is 
typically defined at the 95% level. The second parameter 
is the protection level and represents the worst case 
performance that is typically dominated by the presence of 
failures. It is defined at a level of 99.9…9% where the 
actual number of nines depends on the type of operation 
that is performed.  
 
When system failures cause the protection limit to degrade 
beyond the maximum allowed level called alarm limit, 
this makes the systems effectively unusable. However, the 
effect of failures can be mitigated by failure detection 
(FD). In the case of a detected error, the use of the system 
can be prevented. The worst case performance can then be 
considered conditioned on the absence of detected failures 
which typically improves the protection level 
considerably. The probability that the protection level 
exceeds the alarm level in the absence of a timely 



notification of the user is called the integrity of the 
system. In case of a notification, the system can no longer 
be used for the intended operation. The probability that 
this occurs is called the system’s continuity of function. 
 
To improve the continuity of service of a system, one can 
go one step further than mere failure detection. When the 
failure can be attributed to one particular satellite, this 
satellite can be excluded from the parameter estimation. 
This is called Fault Detection and Exclusion (FDE). Both 
detection and exclusion are based on a measure of the 
measurement errors, usually in the form of a (least 
squares) residual [2,4,14]. 
 
Presence of sufficient accuracy, integrity and continuity of 
function is required to make a system available for a 
certain operation. Therefore, the system performance 
needs to be monitored. In many circumstances, it is also 
beneficial (or required) to predict system performance in 
advance. Where performance monitoring can exploit both 
measurement models and the actual signals, prediction 
necessarily relies on models only.  
 
3. THE SYSTEM MODEL 

In this paper, the system is assumed to be sufficiently well 
described by an overdetermined (N>M) set of linear 
equations that relate the measurements to the unknown 
parameters as 
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with  
 
z : N-vector of measurements 
H:  N×M observation matrix 
x : M-vector with unknown parameters 
n : N-vector of measurement noise 
b : N-vector of measurement biases 
 
When a random D-vector d has a normal distribution with 
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It is assumed that the measurement noise is normally 
distributed with zero mean and covariance-matrix Σn : 

),0(~ nNn Σ  (2) 

For simplicity it will be presumed that the simultaneous 
occurrence of multiple failures is too rare to require full 
investigation. This is justifiable when it is conservatively 

assumed that all these cases automatically lead to 
excessive estimation errors. As only the cases of zero or 
one failure are considered, it is convenient to use Ei to 
denote the event of a failure in measurement i and 
represent the no failure case by E0. The a priori probability 
of occurrence of each event is denoted by P(Ei). 
 
Under the no failure case E0, the measurements are 
assumed unbiased, while under Ei the failing measurement 
contains a bias of unknown size Bi: 

⎩
⎨
⎧

>
=

0,
0 0

iEundereB
Eunder

b
iii

 (3) 

with T

Niiiie ]00100[
...11....1 +−

= LL . Therefore, (1) in fact 

represents several different models that apply to different 
(failure) modes of the system. It is this model that is 
generally used for FDE based architectures. 
 
For the Bayesian analysis, a different model will be used. 
When measurements can contain failures they can be 
modeled by a mix of probability density functions, 
representing the nominal and failure cases respectively, 
weighed by their respective probabilities of occurrence:  
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Note that this a rather different starting point than (1), that 
in fact – in combination with (3) - represents different 
models for the ‘failure’ and the ‘no failure’ case. On the 
other hand, (4) incorporates all cases and their probability 
of occurrence simultaneously.  
 
4. FDE BASED ESTIMATION SCHEMES 

A general architecture of an FDE based parameter 
estimation scheme is depicted in Figure 1. Two 
monitoring functions monitor accuracy and integrity of the 
estimated parameters. The integrity monitor determines 
whether there is sufficient redundancy to detect failures 
with a sufficiently high probability. When this is not the 
case, it provides a warning (yellow light) that the integrity 
of the system can not be guaranteed. When a fault is 
detected, an iterative procedure determines whether the 
fault condition disappears when the measurement set is 
reduced. A detection only results in a red light when this 
is not the case. Of course, the reduced measurement set 
might not possess sufficient error detection power 
anymore, which would result in an integrity warning. 
 
Both the ground and airborne processing schemes of 
LAAS architectures as the ones in [8,12] are represented 
by Figure 1. For the ground based system part, a red sign 
would lead to the blockage of use of a GNSS pseudorange 
correction, while the yellow light is generally not used. 



4.1 FDE Performance 

To describe the performance of an FDE based 
architecture, it is useful to introduce the following 
notational conventions: 
 
x̂ : the estimated parameters 
X:  set of all estimation errors within the alarm limit 
T:  test statistic used for error detection  
h:  threshold for error detection 
 
When the real parameter values are written as x , 
requirements are given in terms of the parameter 
deviation, defined as: 

xxx ˆˆ −=∆  (5) 

Using the symbols above, the probability of a estimation 
failure, when the parameter deviation exceeds acceptable 
bounds, is )ˆ( XxP ∉∆ , while the probability of a detected 
failure equals )( hTP > . It has been proven in [9] that 
these probabilities are statistically independent for test 
statistics based on the (least squares) residual. Therefore, 
the probability of an undetected estimation failure is 

)()ˆ()( hTPXxPHMIP <∉∆=  (6) 

where HMI stands for Hazardously Misleading 
Information. Because system behavior will be 
substantially different under the different events Ei, it is 
convenient to split P(HMI). Writing it explicitly as the 
sum of the probabilities of HMI under each of the events 
Ei it reads: 

∑
=

=
N

i
iEHMIPHMIP

0

)|()(  (7) 

in which  
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In case of failure, both )|ˆ( iEXxP ∉∆  and )|( iEhTP <  
depend on the unknown bias Bi, which prevents their 
computation. There are two ‘solutions’ to solve this 
problem, that are discussed in more detail in [10].  
 
The first solution is to replace the bias by the minimal 
detectable bias (MDB) [7,14], which is the smallest 
satellite bias that can be detected with a probability of at 
least a given probability α. However, biases smaller than 
the MDB have a reduced detectability but can still cause 
estimation failures. For certain combinations of satellite 
geometry and satellite errors, the use of the MDB can 
therefore lead to underestimation of the probability of 
HMI. 
 
The possibility that the MDB approach could be 
underestimating the missed detection probability for 
certain satellite biases has been realized for some years 
now. Therefore, [3,5,9] all propose to substitute a worst 
case bias, that maximizes P(HMI|Ei). Consequently, worst 
case bias substitution never underestimates this 
probability, but is computationally rather involved. 
 
In both cases, the unknown bias is substituted by a bias of 
a particular size that depends only on the system models 
and not on the received measurements. These substitution 
methods are therefore usable for off-line computations and 
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Figure 1. The architecture of an FDE based GNSS system 



can be applied to both performance monitoring and 
prediction. The exclusion part of FDE will not be 
addressed separately here. Suffice it to say that the 
presence of the unknown bias poses similar problems as in 
the detection part. 
 
4.2 Disadvantageous of FDE 

 
FDE has a number of drawbacks that mainly arise from 
the problem of having to deal with an unknown bias. 
Summarizing, the following problems have been touched 
upon in the previous section: 
 
• The unknown bias problem leads to computational 

complexities and inaccurate P(HMI) values and 
therefore either reduces continuity of service and 
unavailability or to underestimation of P(HMI). 

• For performance monitoring purposes, the information 
of the bias is not optimally used as it is only reflected 
in the decision between ‘failure detected’ and ‘no 
failure detected’. 

• The use of separate estimation, fault detection and 
fault exclusion algorithms leads to a complex system 
architecture. 

 
The next section will introduce a new, simplified 
processing scheme for performance monitoring that does 
not have any of the shortcomings listed above.  
 
5. A NEW BAYESIAN APPROACH 

In this section, the traditional separation between the cases 
of absence and presence of failures will be replaced by an 
integrated Bayesian approach that uses a priori weights to 
indicate the probability of the presence of failures. While 
in FDE environments these failure probabilities are only 
used to derive the requirements on the failure detection 
algorithm, they are an integral part of the analysis 
presented here. Note that from now on, the mixture model 

(4) is applied instead of (1). 
A commonly used tool in (Bayesian) statistical 
interference [1] is the likelihood function, that is the 
probability density of the measurements regarded as a 
function of the unknown parameters: 

)~|~()~( xxzPxL ==  (9) 

)~(xL  measures the relative likelihood that a particular 
value x~ of the unknowns has given rise to the observed 
value of the measurements z~ . Given the form of the 
measurements’ distribution (4), the likelihood can be 
written as 
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in which the likelihood under each of the events Ei is 
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When no a priori distribution information about the 
unknowns is present, Bayes’ rule gives their (a posteriori) 
distribution given the measurements as [6] 
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where C is a constant that ensures that (12) represents a 
distribution and integrates to one. Appendix A shows that 
the likelihood has the form: 
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Substitution in (12) and determining C such that it 
integrates to one gives the following mixture description 
for the probability that the x equals x~ : 
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Figure 2. The simplified architecture of a system using Bayesian analysis 
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with the weights of the distributions belonging to the 
events Ei equal to: 
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Note that expression (15) is similar to the one in [12] in 
which the weights are set to P(Ei) and therefore don’t 
reflect any information from the measurements. Here, 
however, one expression contains all information on the 
parameters to be estimated and the possible presence of 
biases, as the weights represent the a posteriori 
probabilities of the events Ei to have occurred.  
 
Because one equation contains all relevant information for 
estimation, fault detection and fault exclusion, a system 
architecture based on the use of the analysis presented 
here can be much simpler, see Figure 2, than was the case 
for the FDE based system of Figure 1.  

 
Just like one would expect, the weights for Ei become 
larger when: 
 
• the a priori probability P(Ei) is higher 
• the residuals under Ei are smaller 
• the accuracy under Ei is better 
• the non-failing measurements under Ei have smaller 

covariance 
 
An example of two realizations of (14) is given in Figure 
3 for the E0 and the E1 case. 
 
For an arbitrary parameter estimate x̂  the probability of 
an estimation failure is readily derived from (12) as: 
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When a warning is issued to the user whenever (16) 
exceeds the allowed maximum probability of P(HMI), the 
probability of an estimation failure without warning 
automatically becomes equal to the probability of an 
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Figure 3. The mixture distribution in the case of no failures and one failure respectively. In the 
first case, the mixture is dominated by the ‘no failures’ distribution, in the second case, by the 
‘failure in measurement 1’ distribution. The alarm limit and P(HMI) are indicated for an 
arbitrary parameter estimate x̂ .  



estimation failure (16) itself! Unlike the case for FDE, the 
answer is exact, as it does not depend on the unknown 
value of the failure-induced bias. For the 95% accuracy, a 
similar approach can be followed.  
 
For exclusion purposes, the weights in (14) are very useful 
as they indicate the a posteriori probabilities that a failure 
has occurred in a particular measurement. Therefore, the 
measurement that corresponds to the event with the largest 
weight is the ‘maximum likelihood’ choice for exclusion. 
 
5.1 High Integrity Parameter estimation 

As [12] has shown, the simple form that P(HMI) takes can 
be exploited to estimate the parameters of interest in such 
a way, that P(HMI) is minimized. Because this effectively 
desensitizes the estimate for measurement biases and 
thereby improves integrity, this is a form of High Integrity 
Parameter (HIP) estimation [11], which can improve 
system availability.   
 
6. APPLICATION TO LAAS 

In this section, the use of the Bayesian analysis is 
discussed more specifically for a LAAS setup. After a 
short indication of possible uses for the ground processing 
function, a slightly more detailed account is given of its 
use in the aircraft. In particular, because of the similarity 
of (14) with the expressions found in [12], the two 
methods are compared by a small simulation. 
 
6.1 Ground processing 

The Bayesian method can be used for different purposes, 
depending on the way the LAAS is setup. In LAAS 
architectures such as the one proposed in [8], the ground 
processing function performs fault detection and exclusion 
based on a continuity-based threshold before it sends out 
pseudorange corrections. In this situation, the FDE 
function might be replaced by exploitation of (14) with all 
the advantageous earlier discussed. However, it will be 
necessary to base the system on an alarm limit for the 
pseudorange corrections.  
 
When the ground station does not do any FDE but 
provides the aircraft with both uncensored corrections and 
correction quality data such as in [12], one of the things 
that could be considered would be to use the mixture 
distribution parameters for quality assessment. This would 
allow for derivation of a mixture distribution for the 
aircraft position, and therefore for exact computation of its 
horizontal and vertical protection level. Another 
possibility would be to use the protection level of the 
corrections for this purpose. 
 
6.2 Airborne function 

The airborne function of a LAAS architecture will always 
use some kind of failure detection on its position 
computations. Instead of FDE, this process might be based 
on the Bayesian method developed here, possibly in 
combination with the same method on the ground as 

discussed above. 
 
Because the results from the Bayesian method resemble 
the multiple hypothesis approach from [12], it is 
interesting to do some comparisons with the results from 
that paper. The important difference between the multiple 
hypothesis and the Bayesian method is, that instead of 
(15) the former uses weights equal to the a priori 
probability of the events Ei: 

 )( ii EPw =  (17) 

These weights don’t reflect the fact that the measurements 
contain information on the likelihood of a possible failure.  
 
Although a full comparison is beyond the scope of this 
paper, some results will be given in this section. All 
system models and parameters are chosen to be consistent 
with [12]. Only a small amount of data has been 
processed. Therefore, the actual values of the parameters 
and the corresponding performance figures are less 
important than the observed trends. 
 
The model is based on the processing of 3 different sets of 
measurements from the ground station to provide three 
different estimates zi of the vertical position xv: 
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where the airborne noise is given as 
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and the ground related noise components (including 
geometry effects) equal 
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The a priori probability that the zi contain corrections that 
contain data from a failing receiver at the ground station is 
given by 
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Although [12] provides no values for the standard 
deviations, it can be derived from the examples that  
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Using these parameter values, two different ways to 
compute P(HMI) have been investigated: 
 
• The Bayesian approach, using weights from (15). The 

result is referred to as PB(HMI) 
• The multiple hypothesis approach (MHA) using (17). 

The result is referred to as PMHA(HMI) 
  

Three different estimators are computed: 
 
• Least Squares, given by zH +  
• HIP estimator obtained by minimization of P(HMI) as 

obtained by the MHA, referred to as the MHA 
estimator 

• HIP estimator obtained by minimization of P(HMI) as 
obtained by the Bayesian approach, referred to as the 
Bayes’ estimator 

 
 
 

Three different failure modes were considered: 
 
• No failure 
• One failure in measurement 1 with a bias of B1=VAL 
• One failure in measurement 1 with a bias of B1=5VAL 
 
Some results for a modest 30 samples of data are 
presented in Figure 4 and 5. 
 
Figure 4 shows that PMHA(HMI) for zero or small biases is 
optimistic for the least squares and MHA estimators, but 
conservative for the Bayes’ HIP estimator. For large 
biases, the least squares solution obviously becomes 
useless, but so does the MHA estimator. Furthermore, 
PMHA(HMI) becomes an unreliable measure of the 
probability of HMI. 
 
This can be explained as follows: for Bayesian analysis, in 
the presence of a large bias, all weights in the mixture 
become zero except the one that corresponds to the bias-

 
 
Figure 4. The probability of HMI for three different estimators under conditions of no failure and one failure of size VAL 
and 5VAL assessed by both the Stanford method of [12] and the Bayesian method developed in this paper 



free estimator the estimator, that therefore becomes equal 
to zH i

+
)( , while the covariance is constant. For the MHA 

case, the biased and unbiased components in the mixture 
are driven apart. Because the weights are constant, this 
means that the MHA estimator will be drawn towards the 
distribution with the heighest weight, which is the one 
under E0. It therefore behaves similar to the least squares 
estimate and is not really robust against failures, as a 
result of the fact that, although the data clearly shows that 
there is a failure in measurement 1, this is not accounted 
for in the weighing of the distributions. 
 
Figure 4 also shows that HIP estimation can improve 
P(HMI) by several orders of magnitude. It is however still 
to be verified that this also leads to increased system 
availability. 
 
Figure 5 compares the performance of the MHA estimator 
measured with PMHA(HMI) with that of the Bayesian 
estimator measured with PB(HMI). In the absence of 
failures or in the presence of small biases, the MHA seems 
to be consistently optimistic. For large biases however, it 
is conservative in its assessment of the lowest P(HMI) that 
can be achieved for a given sample. The estimator it 
provides, however, is way out of bound! 
 
7. CONCLUDING REMARKS 

A Bayesian method has been developed, that exploits both 
all a priori knowledge (in the form of a number of system 
parameters) and all measurement data to derive exact 
integrity information. It therefore provides a powerful tool 
for system performance analysis. A further advantage of 
the method is a simplified computational scheme that is 
more transparent than the one used with traditional fault 

detection and exclusion (FDE) based architectures. All 
monitoring and FDE related functionality is now 
performed by one integrity and accuracy monitor based on 
equation (14). As such, it can be used wherever FDE is 
used, and is not limited to LAAS. 
 
The results of the Bayesian method have been compared 
to those obtained in [12] by the multiple hypothesis 
approach for a typical LAAS configuration. It seems that 
the multiple hypothesis approach sometimes gives too 
optimistic an assessment of the actual probability of 
hazardously misleading information that is achieved.  
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APPENDIX A 

In the no failure case (i=0), the likelihood is readily found 
from the measurement distributions as: 
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with k0 , Σx0 and H+ defined by 
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and the sum of the squared residuals 2
0S  given by 
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In the case of a failure (i>0), the measurement distribution 

depends on the unknown bias Bi. As the bias is only a 
nuisance parameter for the problem at hand, it can be 
integrated out to arrive at the marginal distribution of the 
measurements as a function of the unknowns again, and 
the likelihood thus takes the form  
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As the bias influences only the ith element of the 
measurements, the best way to proceed is to separate the 
ith element from the others. To this end, the following 
notations are introduced: 
 
H(i) : H with the ith row removed 

)(iz : z  with the ith row removed 

)(inΣ : nΣ with the ith row and column removed 
2
iσ : conditional variance of neT

i  for given )(in  
 
to be able to write the integrand in (A.4) in the form: 
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The bias is now readily integrated out. Because for all real 
a it is known that  
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the likelihood can be written as: 
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in which Σx(i), +
)(iH and 2

)(iS are defined as above with H 
replaced by H(i), and 
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When for the non failure case a consistent notation is 
defined by setting H(0) = H, Σn(0) = Σn etcetera, the 
likelihood under all events Ei can be written in the form  
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in which 
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and  
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