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ABSTRACT 

This paper provides a description of the general concepts 
behind the integrity providence of locally augmented GPS. 
It shows why the exact integrity is hard to evaluate, even 
when simple error models are used, and explains the 
problems that will have to be resolved before a full 
performance assessment can be obtained. Integrity is 
mainly provided by using redundant receivers. Therefore, 
the paper pays special attention on two ways to combine 
the outputs of multiple receivers. It discusses the merits of 
both the traditional error detection and identification 
scheme and a simple robust scheme as mid-value 
selection, which proves much easier to evaluate. 

1. Introduction 

This paper is written to clarify the general methodology of 
LAAS integrity monitoring. This does not imply that an 
attempt was made to discuss all possible ways to do such 
monitoring; this would probably only obscure the common 
principles all methods basically exploit. On the other 
hand, the concept of LAAS integrity monitoring has 
already been dealt with in several other papers such as 
[Murphy97]. This paper therefore aims at addressing 
LAAS integrity monitoring on a level somewhere in 
between the abstraction of the concept and the specific 

properties of a particular architecture. Whenever 
appropriate the LAAS architecture that is currently being 
developed by the FAA LAAS Team in conjunction with 
the RTCA [Liu97] is used as an illustration of a practical 
implementation. However, the focus remains on the 
general approach rather than on implementation details. 
  
The paper discusses the performance of Autonomous 
Integrity Monitoring (AIM) in Local Area Augmentation 
Systems (LAAS) that augment GPS for use in high 
performance landing systems. AIM exploits signal 
redundancy to extract information on error characteristics 
and removes suspicious measurements before they can 
effect system operation adversely. For a differential 
system such as LAAS AIM differs from the ‘usual’ en 
route AIM in three ways. First of all a cascade of two 
error detection schemes is involved: the first one on the 
ground, the second in the air. Secondly, the focus in a 
differential system lies on receiver errors rather than 
satellite errors as the latter usually cancel through the 
differential correction. Therefore, integrity is provided by 
redundant receivers. Finally, the differential corrections 
reduce the noise levels in the final positioning algorithm. 
This ensures a higher nominal accuracy and integrity, but 
also makes the results of performance computations more 
sensitive to modeling errors. 
 
In parallel with AIM, a particular robust estimation 
technique is considered. In the so-called mid-value 
selection scheme, the available redundancy is used to 
reduce the effects of errors rather than for detection. This 
results in a completely different approach to integrity of 
which the particular advantages and disadvantages will be 
reviewed.  
 
After a short introduction on the used notational 
conventions, the LAAS measurement and error models 
will be specified in section 3. Section 4 reviews the 
computations on the ground and in the air and introduces 
the two possible ways to combine the outputs of the 



 

redundant receivers: least squares with error detection, 
and mid-value selection. More detail on the error detection 
is supplied in section 5, after which section 6 discusses the 
performance of both alternatives. Section 7 provides a 
short overview of the main differences between the two 
methods and gives a limited amount of simulation results. 
Conclusions and recommendations conclude the paper.  

2. Notational conventions and symbols 

In this paper, the following notations will be used for the 
statistical distributions: 
 

Xx ~ : x has probability density function (pdf) X  
Xx <~ : x has a pdf bounded by X  

)(xpdf : the probability density function of x 
YX *  : convolution of pdfs X and Y 

),( Qµ
rN : multivariate normal distribution with mean µ

r
 

and covariance matrix Q 
),( ba
rrU : multivariate uniform distribution; the ith element 

is uniformly distributed on the interval 
]][],[[ ibia
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The median of multiple vectors is used on an element by 
element basis: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

])[][],[(

])1[]1[],1[(
),,(

321

321

321

NxNxNxmedian

xxxmedian
xxxmedian

rrr
M

rrr

rrr
 

 
‘All zero’ and ‘all one’ vectors will be denoted as 0

r
 and 

1
r

 respectively. 
 
Although the following symbols will be introduced in the 
text as well to ease reading the text linearly, the following 
list is provided as a service to those readers reading 
otherwise and as a quick reference: 
 
• Numbers and indices 
 
Ma: number of airborne receivers 
Mg:  number of ground receivers 
Mx:  either Ma or Mg 
ar:  index of airborne receiver ∈ a1 ... aMa 
gr:  index of ground receiver ∈ g1 ... gMg 
xr:  either ar or gr 
N:  number of satellites tracked by ground receivers 
NC:  number of corrected pseudoranges tracked by the 

airborne receivers 
 

• Ground station related symbols 
 

gzr : pseudorange corrections from combined output of 

ground receivers  
ge
r : errors in the corrections from the ground station 

grzr : pseudorange corrections measured by receiver gr 

gre
r : errors in receiver gr 

gx
r : pseudorange errors in satellites 

 
• Airborne user related symbols 
 

azr : corrected pseudoranges from combined airborne 
receiver outputs  

arzr : corrected pseudoranges measured by receiver ar 

are
r :  errors in receiver ar 
Ha  :  airborne observation matrix  

ax
r :  vector with airborne position and clock bias 
v̂∆ : vertical position error 
T
as
r

: vector that translates errors in corrected pseudo-
ranges to the vertical position error domain  

 
• Either airborne user or ground station related 

symbols 
 

xe
r : either ae

r or ge
r  

xre
r :  either are

r or gre
r  

xrν
r

: receiver noise in receiver xr 
MP
xrµ
r

:  multipath error in receiver xr 
F
xrµ
r

: receiver failure error in receiver xr 
i
xrβ : Boolean function that is zero when the ith channel 

of receiver xr is excluded by the error detector.   
i
xrB : test statistic to test on an error in the ith channel of 

receiver xr 
i
xrh : threshold for i

xrB to decide on an error 

3. The LAAS system model 

A GPS based LAAS contains three major parts: 
 
• the GPS space segment, which delivers the navigation 

signals 

• the ground station, that computes the errors on the 
received pseudoranges and uplinks them as corrections 

• the airborne user, that uses both the GPS signals and 
the corrections for navigation 

 
Because errors that are common between the ground 
segment and the user are corrected, the system is relatively 



 

insensible to errors of the space segment. In a differential 
system, the focus will therefore lie on receiver errors and 
local signal disturbances at the ground station and the 
airborne user.  
Before introducing the relevant error models, the system 
models of the ground and airborne segment will be 
provided. To mitigate the consequences of failing 
receivers, both the ground and airborne equipment will 
usually consist of multiple receivers. In the following 
analysis, it has implicitly been assumed that the clocks of 
the ground receivers are perfectly synchronized. This can 
for example be achieved by calibrating all receivers with a 
GPS signal generator [RTCA96].  

3.1   Ground station observation model 

Because the position of the ground antennas is known, the 
ground station measures the pseudorange errors 
straightforwardly. Therefore, the pseudorange error 
measurements that are measured by the grth ground 
receiver can simply be modeled as: 
 
 grggr exz

rrr
+=  (3.1.1) 

 
with 
 

grzr : N-vector of measured pseudorange corrections 

gx
r : N-vector of pseudorange errors 

gre
r : N-vector of receiver introduced errors 

 
N is the number of satellites that are tracked by the ground 
station. 

3.2   Airborne observation model 

Although the exact relation is nonlinear, it is assumed that 
a linear regression model describes the relation between 
the corrected GPS pseudoranges and the user position 
with sufficient accuracy. The model for the arth airborne 
receiver can thus be written as 
 
 garaaar eexHz

rrrr
++⋅=  (3.2.1) 

 
in which 
 

arzr : NC-vector of corrected pseudoranges 
Ha  :  NC × 4 airborne observation matrix  

ax
r :  4-vector of unknowns (position, clock bias) 

are
r :  NC-vector with receiver errors 

ge
r : errors in the pseudorange corrections 

 
NC is the number of satellites for which the ground station 
broadcasts corrections. Of course, it is possible that the 
airborne receivers track some pseudoranges for which 

they do not receive corrections. This situation occurs 
when they track more satellites than the ground station or 
when the error detection circuitry on the ground prevents a 
certain correction to be uplinked. Although it would still 
be possible to use the uncorrected pseudoranges, they are 
not expected to contribute significantly to either the 
accuracy or integrity due to their relatively high noise 
levels. Their use will therefore not be considered in this 
paper.  
 
Note that the errors are

r
and ge

r
are assumed not to contain 

the common satellite errors, but comprise only receiver 
related error components. They can therefore be 
considered independent. 

3.3   The error models 

Because GPS pseudorange errors introduced by satellite 
(clock) failures or ionospheric and tropospheric delays are 
mostly common to the ground and airborne receiver, they 
are not expected to dominate the quality of the final 
position fix. In this paper, it is assumed that the most 
important error sources that are present in the system are 
receiver related. The models for the ground and airborne 
receiver errors will be very similar. To avoid duplication 
of many of the equations, the index xr will frequently be 
used to represent both the earlier introduced gr and ar 
simultaneously.  
 
The basic error model contains three supposedly 
independent error components:  
 
• a noise-like component xrν

r
 

• a multipath bias component MP
xrµ
r

  

• a receiver failure bias F
xrµ
r

  
 
that are added to arrive at the total receiver error: 
 
 F

xr
MP
xrxrxre µµν

rrrr
++=  (3.3.1) 

 
The models of each of the three error sources will be the 
topic of the coming three paragraphs. Finally, the 
consequences of the choice of these ‘submodels’ for the 
distribution of (3.3.1) will be considered in this section’s 
closing paragraph. 

3.3.1 Noise models 

It is a usual assumption that all noisy error contributions 
are characterized sufficiently well when they are modeled 
as independent zero mean Gaussian noise. When the 
covariance of the noise is Qxr, the probability density 
functions of these contributions become: 
 



 

 ),0(~ xrxr Q
rr

Nν  (3.3.1.1) 
 
The covariance matrices have the variances of the 
different satellites -usually as a function of satellite 
elevation- on their diagonal. 

3.3.2 Multipath modeling 

Because of the low noise levels multipath will have a large 
impact on the overall system performance. It is therefore 
extremely important to avoid using are overly optimistic 
models. Unfortunately, it is hard to precisely characterize 
the multipath present in a certain sample either statistically 
or otherwise. The influence of multipath on the measured 
pseudoranges not only depends on the number and power 
of the reflections, but also on the antenna and receiver 
design.  
 
Computationally, it is attractive to model multipath errors 
as zero mean Gaussian. This approach is followed in 
[Liu97] and [VanDyke97] but these papers provide no 
justification. Still, it might well be that this model is 
appropriate at least for the airborne segment because of 
the airplane dynamics. 
 
Some studies such as [RTCA96] assume that with 
specially designed antennas, the errors caused by 
multipath may be limited in norm. Consequently, 
multipath is sometimes modeled as a uniform distribution 
with boundaries of 20 (or maybe 15) centimeters 
[Skidmore96]: 
 
  )12.0,12.0(~

rrr
⋅⋅−UMP

xrµ  (3.3.2.1) 
 
[Skidmore96] states that full verification of (3.3.2.1) is 
still a topic of current research. 
 
Assuming that the multipath error is indeed bounded, it 
would also be possible to model the multipath as ‘worst 
case’, effectively concentration the probability density 
function in one single point. This makes the model 
deterministic and safe, as it is always conservative. Other 
advantages are the independence of the model of the exact 
pdf, and its computational simplicity. Obvious 
disadvantage is that worst case modeling might be overly 
conservative and limit system availability. 

3.3.3 Receiver failures 

When a receiver functions normally, its measurements 
should be free of significant biases (other than multipath 
biases), and therefore 0

rr
=F

xrµ . In the case of a hard- or 
software failure of a receiver, the receiver will most likely 
have some undefined state. This makes it impossible to 
say anything on the resulting pseudorange errors of the 
receiver output. Therefore, for this type of failures the use 

of a ‘worst case’ assumption seems to be the only 
procedure that always stays ‘on the safe side’ [Ober97].  
 
The interpretation and determination of the worst case is 
not at all trivial. As it will also depend on the algorithms 
to compute the system’s unknowns and detect errors, the 
discussion will have to be postponed until section 6. This 
section finishes with the overall error model that results 
from the three submodels of all error contributions. 

3.3.4 The overall error model 

Within the LAAS model, failures from several different 
sources accumulate. When the disturbances are additive 
and independent, the probability density functions of their 
sum equals the convolution of the probability density 
functions of all the contributions. The pdf of the total error 
of (3.3.1) therefore reads: 
 

)pdf()pdf(*)pdf()pdf( F
xr

MP
xrxrxre µµν

rrrr
∗=  (3.3.4.1) 

 
Computation of such a convolution is generally hard. 
Some distributions like the Gaussian and chi-squared 
distributions, are reproductive under convolution, but this 
is not true for most other distributions. This is one of the 
reasons why the uniform distribution model for the 
multipath is computationally unattractive. One of the 
possible remedies to ease computations is to bound the 
exact overall error distribution by a bounding Gaussian 
distribution, as has been suggested in [VanGraas97]. 
Similar ‘pdf bounding’ techniques will be applied to the 
mid-value selection performance computations in section 
6, but have to be used with great care. 
 
Both the ‘worst case’ deterministic and the Gaussian 
multipath model have the advantage of keeping all pdfs in 
(3.3.4.1) normally distributed. In the deterministic case, 
the mean of this distribution will be nonzero; when “ ' ” 
indicates worst case values, the overall pdf becomes 
nothing but the following shifted version of the noise pdf: 
 
 ),(~ xr

F
xr

MP
xrxr Qe µµ ′+′ rrr N  (3.3.4.2) 

 
When the multipath is assumed normally distributed, it 
can be incorporated in an increase of Qxr, while 

MP
xrµ′r remains zero, and thus: 

 
 ),(~ xr

F
xrxr Qe µ′rr N  (3.3.4.3) 

4. Computing the unknowns 

This section will cover the computation of the unknowns 
in a LAAS system. In the airplane, this is done to compute 
the position, on the ground to compute the pseudorange 
errors corrections that should be uplinked.  



 

 
Special attention will be paid to the way the outputs from 
redundant receivers are combined. One of the possibilities 
is to use least squares estimation. When all receivers are 
identical, least squares estimation results in taking the 
mean of the outputs. The advantage of using least squares 
is that receiver noise is averaged out optimally. Because of 
its sensitivity to errors, integrity will have to be provided 
by a separate error detection and isolation scheme that 
works in conjunction with the least squares estimation. 

 
An alternative approach is the use of an error resistant 
(robust) computation scheme. One of the most 
straightforward and robust schemes uses the mid-value 
(median) rather than the mean. This scheme will be 
discussed as well. Because of its relative insensitivity to 
errors, a separate error detection and identification scheme 
is not needed although it still can be used. 

4.1   Combining the output of multiple receivers 

When combining Mx equally accurate measurements of 
essentially the same quantity, the most intuitive way to 
combine the different outcomes is to take their mean value 
as the best representative: 
 

 ∑
=

=
x

x

M

r
xrMx zz

1

1 rr  (4.1.1) 

 
The mean value is exactly the value that minimizes the 
sum of the squared estimation residuals. In the remainder 
of the text the term ‘least squares estimation’ will 
therefore be used frequently to refer to (4.1.1).  
 
Using (4.1.1), the error in the combined output simply 
becomes the average of the errors in the different 
receivers: 
 

 ∑
=

=
x

x

M

r
xrMx ee

1

1 rr
 (4.1.2) 

 
A well known property of the mean is its sensitivity to 
errors: although decreased by a factor 1/Mx, an error in 
one of the receivers can still cause arbitrarily high errors 
in the combined output. To obtain integrity, the least 
squares technique will therefore always have to be 

combined with error detection algorithms. One possible 
error detection algorithm will be explained in more detail 
in section 5.  
 
An alternative to least squares estimation is the use of 
mid-value selection. Mid-value selection is a simple 
robust estimation technique, which makes the final 
estimate insensitive to large errors as long as less than half 
of the receivers are malfunctioning. Using the notation 
from section 2, the combined output and its errors can be 
written as 
 
 ),...,( 1 xxMxx zzmedianz rrr

=  (4.1.5) 

 ),...,( 1 xxMxx eemediane
rrr

=  (4.1.6) 
 
The median offers ‘build in’ integrity because large 
receiver errors will have a very limited influence on the 
final position solution. Additional integrity can still be 
obtained by using error detection and identification 
schemes, but is beyond the scope of this paper.  
 
Figure 1 shows why mid-value estimation is error 
resistant. When there are three receivers of which one is in 
error, the mean moves strongly towards the erroneous 
outlying measurement. The median is relatively 
insensitive: the outlier can become infinitely large while 
the median still remains close to the correct value (0). 
 
A third possible way to use multiple receivers is to use 
only part of the receivers for computing the unknowns and 
the remaining receivers exclusively for error detection 
[Kovach97]. In this setup, the unknowns are in fact 
computed twice by two subsets of the receivers, while 
error detection is performed by checks on the mutual 
consistency of the subsets’ outputs. Compared to the 
integrated solution the accuracy will be less as the noise is 
averaged out over fewer receivers. On the other hand, the 
complete independence of the monitor might offer 
improved integrity. Although the final performance of this 
setup might differ essentially from the performance of 
integrated architectures, the methodology of operation is 
not, and this paper will therefore not provide explicit 
equations. 

Figure 1. The mean and median in cases of zero and one outlying measurements. The mean is pulled towards the 
outlying measurement, while the median is not. 



 

4.2   Ground pseudorange correction computation 

There is not much to add to the discussion on combining 
receiver outputs when considering the computation of the 
pseudorange corrections on the ground. Because the 
pseudorange corrections are measured straightforwardly 
by the ground receivers, the final correction to be uplinked 
is simply the combined output gzr  from (4.1.1).  

4.3   Airborne position computation 

In the aircraft, the position of the GPS antenna is 
computed. The accuracy and integrity of this computation 
determine the actual LAAS performance. Due to the 
properties of GPS in combination with the primary use of 
a LAAS as a landing aid, it is usually the vertical position 
that is critical in the performance evaluations. Because it 
simplifies the problem without effecting the treated 
methodology, this paper will therefore focus on the 
vertical position only. Suffice it to say that a similar 
approach can be used to assess the horizontal performance 
as well. 
 
The position can be computed from the combined outputs 
of the airborne receivers by using least squares or robust 
estimation techniques. Because receiver errors are already 
dealt with, least squares might be the preferred method. In 
that case, the position estimation becomes 
 
 aaa zSx rr

⋅=ˆ  (4.3.1) 
 
with Sa=(Ha

THa)-1Ha
T. When T

as
r

 is the row from Sa that 
corresponds to the vertical position, the error in the 
vertical component can be written as 
 
 )(ˆ ga

T
a eesv

rrr
+⋅=∆  (4.3.2) 

 
This equation shows that the vertical position error is a 
linear combination of the sum of the ground and airborne 
receiver errors. Although this would be the appropriate 
place to provide an equation for the pdf of the vertical 
position, this pdf depends on the pdfs of the combined 
receiver outputs. These pdfs on their turn depend on the 
implementation of the error detection and identification 
scheme. Discussion of this scheme is thus a necessary first 
step towards assessing the final position error pdf. 

5. Error detection 

In general, one could say that in order to detect an error, 
the mutual consistency of multiple signals that represent 
the same quantity is used. As soon as the signals disagree 
sufficiently, an error is assumed. To identify the source of 
an error as well, a related but slightly different approach is 
appropriate. The suspected erroneous source is isolated 

and compared to all other signals. When there is 
disagreement, the suspicion is assumed correct, and the 
signal is removed from the solution.  
In the remainder of this section, the LAAS architecture 
that is currently being developed and investigated by Ohio 
University is taken as a starting point. Using similar 
methods, other architectures would be possible as well, 
but discussing all of them is beyond the scope of this 
paper. 

5.1   Testing between receivers 

As indicated before, the use of a least squares algorithm to 
combine the outputs of different receivers needs 
consistency checks to provide integrity. One of the 
important characteristics of the Ohio University 
architecture is that it uses a set of test statistics i

xrB  for 
each channel of each receiver to perform ‘one step’ error 
detection and identification. Failures in a specific receiver 
are detected by comparing their individual outputs to those 
of the other receivers. The test statistics used to check the 
output on the ith channel of receiver xr can be written as: 
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and can be proven to be nothing but an estimate of the 
output error of receiver xr on channel i. An error is 
detected as soon as the estimated output error exceeds a 
certain limit i

xrh : 
 
 xrreceiverinerrorhB i

xr
i
xr ⇒>  (5.1.2) 

 
When the multipath is modeled as either worst case 
deterministic or Gaussian, the test statistic i

xrB  will be 
distributed according to 
 
 ]),[,(~ 2

1 iiQNB xMM
i
xr

i
xr

xx −
µ  (5.1.3) 

 
When the multipath is Gaussian, the multipath error is 
accounted for in Qx and 
 

 ∑
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while for worst case multipath modeling it becomes 
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Note that the given scheme identifies erroneous receivers 
on a ‘per channel’ basis. Additional support on the 
identification of erroneous receivers could be obtained by 
a check over all channels, for example by looking at the 
norm of the vector xxr zz rr

− . When this norm is high for a 
certain receiver and remains high over a sufficiently long 
period, the xrth receiver will probably have to be replaced. 
Of course, such ‘replacement’ decisions should also be 
made when one of the receiver channels is failing 
repeatedly. 
 
When mid-value selection is used, error detection is 
performed implicitly. To identify a failing receiver, the 
same residual techniques that were discussed above can be 
used. Identification can also be done by monitoring 
whether the output of a certain receiver is selected 
approximately 100/Mx percent of the time. If one of the 
receivers is used significantly less often, this would 
indicate that it produces too many outlying values and 
should be replaced. 

5.2   Additional tests 

Although the tests in section 5.1 will form the ‘core’ of the 
LAAS integrity providence, it is possible to do some extra 
checks. These can deal with some of the failure scenarios 
that would not be covered by only comparing the outputs 
of different receivers. 
 
In the air, the same AIM algorithms that are used to 
provide protection against failing satellites en route can be 
used in a LAAS setting as well. These algorithms test the 
mutual consistency of the corrected pseudoranges used in 
the position computation, and provide extra protection, for 
example in case of: 
 
• Multiple receiver failures 
• Datalink failures (corrupting the corrections) 
• Common pseudorange errors, for example caused by 

radio frequency interference or excessive multipath  
 
On the ground, there is no mutual consistency as all 
corrections are independent. However, the corrections can 
be checked ‘as such’. Extremely large corrections still 
indicate a problem with the used models. Although the 
error might be common to the airborne user and the 
reference station, it might still be wise to send no 
correction. Highly dynamic behavior of the corrections 
can be another sign of potential problems. Even if the 
corrections would still be correct, high dynamics lead to a 
fast decorrelation of the corrections in time, which makes 
the final position solution sensitive to timing delays and 
errors. 

6. Computing LAAS performance 

The final decision whether it is safe to land using a LAAS 
system should be taken in the air. This decision will be 
based on the probability that the system delivers vertical 
position errors that are larger than the Vertical Alarm 
Limit (VAL) requirement. Only when this probability is 
extremely small, the system will be considered sufficiently 
safe. Usually, the computation is approached from the 
other side. Instead of computing the probability that the 
VAL is exceeded, the Vertical Protection Level (VPL) is 
computed. The VPL is defined as the position error that 
bounds the actual position with a given (high) probability. 
Only when the VPL is smaller than the VAL the system is 
safe to use. 
 
 In either case, the probability density function of the 
vertical position error is needed. This pdf depends on the 
pdfs of the different error sources and on the error 
detection and identification algorithms that are 
operational. Recall that the vertical position error is a 
linear combination of the pseudorange correction errors 
from the ground and the pseudorange errors onboard the 
airplane: 
 
 )(ˆ ga

T
a eesv

rrr
+⋅=∆  (6.1) 

 
where ae

r
and ge

r are the output errors of a censored 

combination of multiple receiver outputs. It is exactly the 
censoring which makes it hard to calculate the pdfs of ae

r
 

and ge
r

.  

 
Suppose that a combination of least squares and error 
detection and identification is used. The removal of 
suspected erroneous measurements is a non-linear 
operation. Despite the attempts to describe the output 
errors of the individual receivers in terms of Gaussian 
distributions, the resulting pdf after error detection will 
still not be Gaussian. Mid-value selection is a nonlinear 
operation as well. The next paragraphs will illustrate the 
effects of the non-linearities and indicate which principles 
should be applied to assess the guaranteed system 
performance. In particular, this involves the determination 
of ‘worst case’ multipath and receiver failure biases. The 
worst case position error pdf will then have to be used to 
assess whether the probability that the VAL is exceeded is 
sufficiently small to continue using the system. 

6.1   The pdf of the combined receiver outputs 

This paragraph investigates what can be said about the 
pdfs of the combined output of multiple receivers using 
either least squares with error detection or mid-value 
selection. The first step is the determination of worst case 
multipath, the second to find the worst case receiver 



 

failure. The latter will problem will prove much harder, 
especially for the least squares case. 

6.1.1 Worst case multipath 

When looking at system integrity, worst case multipath is 
multipath that is common to all receivers. This multipath 
can not be detected, as it gives zero mean test statistics, 
and has the largest possible influence on the combined 
receiver output. This means that the effects of multipath 
are most destructive when all receivers suffer from the 
maximum amount of multipath. When this amount equals 
20 centimeters, the combined receiver output suffers 20 
centimeter errors in as well2. Mid-value selection does not 
protect against common failures either, and the effect on 
its output will be 20 centimeters as well.  

6.1.2 Least squares and receiver failures 

Consider the case in which the outputs if multiple 
receivers are combined using least squares with error 
detection and identification. The set of test statistics that 
looks for receiver errors in the ith channel is i

xxM
i
x BB ...1 . 

 
Only those measurements for which the test statistic is 
below a certain threshold i

xrh  will be used in the 
averaging process that generates the final output. Using a 
Boolean function )( i

xr
i
xr

i
xr hB ≤= ββ , the error in the 

combined output of the receiver can be written as1:  
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Assume for simplicity that there are three receivers. 
Furthermore, assume that all receivers operate to 
specifications and thus 0

rr
=F

xrµ . Usually, the detection 

threshold i
xrh will be chosen such that the probability of 

detecting errors (false alarm) is small. Therefore, most of 
the time the combined receiver output will equal the mean 
of the three receiver outputs. [Liu97] shows that the pdf of 
the output in that case simply equals: 
 
 No failure detected: i])[i,Q,(~][ x3

1
xx µie Nr  (6.1.1.3) 

 
When the multipath is modeled as Gaussian it is 
incorporated in Qx and thus 0=xµ , while for worst case 
multipath modeling 2.0=xµ . 
 
When an error is unjustly detected and a measurement is 
removed, the situation becomes more complicated. 
[Liu97] provides expressions for the pdf of this case. In 
particular, it is shown that the pdf after removal of one 
measurement is no longer Gaussian. This is readily 

explained. Assume that the third measurement has been 
excluded. The probability that this happens will be higher 
the more the values of the other two measurements differ 
from the third, while the mean of those same two 
measurements becomes the combined output. This biases 
the output in the direction opposite to the excluded 
measurement. 
  
When there are failures in the system, the situation 
becomes even more complicated. Assume that the third 
measurement comes from a failing receiver and is biased. 
As long as the bias remains undetected, the output 
becomes biased in the same direction as the bias in the 
third receiver. However, the larger the bias becomes, the 
likelier that it will be detected but the worse its effects 
when it remains undetected. Moreover, the detection is 
likelier when the other two measurements differ more 
from the biased one, just as in the no failure case. This 
will bias the pdf after detection in the direction opposite to 
the bias in the third receiver, but this final output bias will 
be smaller the larger the bias in the third receiver is. 
 
To visualize what has been explained above, Figure 2 
shows the behavior of the pdfs for the cases discussed. 
These results come from a simulation of 106 samples, in 
which the detection algorithm was tuned to a false alarm 
probability of 0.25. This value was deliberately chosen 
this high to ensure getting a significant amount of samples 
in all of the plots. All receiver errors were normally 
distributed with variance σ2, while one of the receivers has 
been given a bias ranging between 0 and 6σ.  
 
As discussed in section 4, there is usually no information 
on the bias in a failing receiver. The only way to 
overcome this lack of knowledge safely is to assume a 
‘worst case bias’ every time a receiver fails. The question 
of the ‘worst case’ receiver failure still remains to be 
answered. ‘Worse case’ eventually means: ‘affecting 
system integrity in the most adverse manner’.  
 
What really makes the determination of the worst case 
bias tough is the non-Gaussian character of the errors. As 
the form of the pdf changes with the bias size, it is 
difficult to 
 find an unambiguous way to rank the different pdfs from 
‘optimal’ to ‘worst case’. One of the possible ways of 
ordering could be to look at the pdf with the heaviest tail. 
Another approach could be to bound the pdf with a 
function that is easier to handle. The different shapes of 
the pdfs for different bias sizes suggest that it would really 
be hard to find an appropriate function though. 
Obviously, this can hardly be called a satisfactory answer 
to the ‘worst case failure’ question. It is clear that further 
research is necessary to find ways to overcome the 
indicated problem.  



 

6.1.3 Mid-value selection and receiver failures  

Mid-value selection has characteristics that are quite 
different when compared to least squares. It really shines 
in case there are errors, but performs suboptimally when 
all errors are zero mean Gaussian.  

 
First, consider the probability that the output error of the 
combined receivers exceed a certain number e0 when all 
receivers function well. Of the three outputs, the one with 
the value that lies in between the two others is selected. 
This implies that at least two of the three receiver outputs 
have to be in error by more than e0. Using the equal 

Figure 2.  The probability density functions of combined receiver outputs. All receiver errors are normally 
distributed with variance σ2. One of the receivers has a bias with values ranging from 0 to 6σ. The three 
columns correspond to mid-value selection, least squares with no error detected, and least squares with 
one error detected respectively. In the last case, the erroneous receiver has been removed from the 
solution.
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statistical properties of all three receivers, the following 
equation is obtained [David70]: 
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    (6.1.3.1) 
 
Figure 3 shows a plot of the values of (6.1.3.1) as 
compared to corresponding values of three different 
Gaussian distributions. The plot suggests that  
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 (6.1.3.2) 
 
is a reasonable upperbound on the probability density 
function of ][iex

r
. Note that the variance is one and a half 

times larger than in the least squares case when no 
detection occurs. This is the price paid for the advantage 
of error insensitivity and the impossibility of false 
detections. 
 
Now consider the probability that the output error of the 
combined receivers exceeds a certain number e0 while one 
receiver is in error. This probability is largest when the 
erroneous output always exceeds e0. In that case, the 
combined output will also exceed e0 when at least one of 
the remaining two receivers is in error by more than e0. 
The following result is therefore obtained: 
 
 2

010101 )][()][(2)][( eiePeiePeieP xxx >−>=>
rrr          

 (6.1.3.3) 
 

For sufficiently large e0 the last term becomes negligible, 
which leads to the following upperbound on the pdf of the 
combined output: 
  
 ]),[,0(2~][: iiQiefailureone xrx N<

r
 (6.1.3.4) 

 
Note that for small values of e0 (6.1.3.4) is conservative by 
at most a factor 2, while the bound becomes tighter when 
e0 grows. Values of the upperbound from (6.1.3.4) are 
plotted in Figure 4 together with the probability density 
function of ][iex

r
obtained from a large simulation (106 

samples). 
 
The results (6.1.3.3) and (6.1.3.4) can be combined to get 
a fully worst case upperbound on the vertical position 
error pdf. As discussed earlier, the vertical position is a 
weighted sum of 2NC channel output errors: 
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When all receivers – both on the ground and in the air – 
are operating correctly, (6.1.3.2) can be applied to all 
errors. In that case, an upperbound on the vertical position 
error is obtained as 
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When one of the ground receivers is in error, (6.1.3.4) has 
to be used for the ground segment and (6.1.3.2) for the 
airborne part: 

Figure 4. The probability density function of the 
combined output of three receivers of which one 
failing using mid-value selection, compared to 
twice the Gaussian distribution. 

Figure 3. One minus the cumulative distribution 
function of the combined output of three correctly 
operating receivers using mid-value selection, 
compared to those of three different Gaussian 
distributions.  
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The two factors CN2 originate in the convolution of the NC 
error pdf bounding functions (6.1.3.4), see Appendix A. In 
a similar fashion, the following expression for the case in 
which both a ground and an airborne receiver failing is 
obtained: 
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 (6.1.3.8) 
 
The probability that the vertical position error exceeds the 
VAL can be found by using a weighted sum of the given 
three different pdfs. The weights should equal the 
probability that a certain pdf is valid at a certain moment 
in time, see for example [Ober97]. 

7. Least squares and mid-value selection compared 

Having discussed both least squares and mid-value 
selection it might be useful to summarize the main 
differences between the methods shortly. The operational 
differences have been summarized in Table 1. Most, but 
not all of these differences have been addressed in the text 
already. Table 2 gives some indication of the performance 
differences. 
 
Because a rigorous method to evaluate the worst case bias 
performance of the least squares with error detection has 

not been found yet, it is currently impossible to assess the 
operational performance differences. However, current 
methods exist to do a performance assessment. These 
simulation figures to be presented here compare the mid-
value selection vertical protection limits to those 
computed with algorithms developed by the RTCA. These 
algorithms use least squares and error detection as 
described in this paper, but include no ‘rigorous’ worst 
case bias principles. The main reason for presenting the 
simulation result is therefore to provide a limited 
indication of the performance that can be expected from 
mid-value selection as compared to a well-studied and 
available method.  
 
The RTCA algorithms and their parameters are described 
in [VanDyke97] that gives VPL expressions for the fault 
free and single failure case. The latter uses the actual 
values of the test statistics (5.1.3) (see also the comment in 
the first note). Substitution of the stochastic model for the 
test statistics in the error-free case gives a so-called 
‘predicted’ VPL: the VPL that is expected to be computed 
in the airplane when the system is operating well. 
Therefore, the predicted VPL determines the continuity of 
service that can be expected from a correctly functioning 
system. The airborne segment in the expression in 
[VanDyke97] is modeled as if it were operating a ‘single 
receiver’ only. Therefore, the expressions were slightly 
adapted to incorporate three correctly working airborne 
receivers instead of just one. All parameters for three 
receivers and Cat II conditions have been taken from 
[VanDyke97]. About 400,000 samples (equally spread 
over 24 hours and the globe) have been computed. 
Multipath has been modeled as a Gaussian disturbance. 
 

Least Squares Mid-Value Selection 
Separate error detection algorithm No error detection required 
Optimal accuracy Reduced accuracy 
Hard to assess ‘worst case’ biases Readily computable ‘worst case’ biases 
High influence of undetected errors Small influence of undetected errors 
Position jump after detections Graceful degradation 
Table 1. Differences between least squares and mid-value selection 

VPL Method Availability Mean VPL 
No failures – LS (RTCA) 0.9990 1.31 
Predicted (RTCA)  0.9985 2.16 
No failures – Mid Value Sel. (6.1.3.6) 0.9986 2.06 
1 Ground Rx failure - Mid Value Sel. (6.1.3.7) 0 38 
1 Ground 1 Air Rx failure - Mid Value Sel. (6.1.3.8) 0 596 
Table 2. RTCA Algorithms compared to Mid-Value selection 
 



 

As expected, the no failure VPL computation of the 
RTCA gives the best VPL values because of the reduced 
amount of noise as compared to mid-value selection. The 
‘no failure’ VPL using mid-value selection is comparable 
with the RTCA’s ‘predicted VPL’ values. When the 
probability of a receiver failure is small, this value is a 
good indication of the overall system performance as well, 
due to the fact that the VPL is not that much larger than 
the ‘no failure’ VPL.  

8. Concluding remarks 

This paper has described two different ways to exploit 
signal redundancy to provide system integrity for locally 
augmented GPS. Most attention has been paid to the way 
the output of multiple receivers can be combined into a 
single value that should be as error-free as possible. 
 
Because of the extremely high requirements, the modeling 
of all signal disturbances must be done with great care. 
Unfortunately, available multipath models do not seem to 
be fully validated yet. Therefore, the discussion in this 
paper considered three possible models when discussing 
the LAAS integrity methodology.  
 
The least squares scheme has to be combined with error 
detection and removal algorithms in order to provide 
integrity. One of the main difficulties is that the combined 
output signal after censoring by the error detector is hard 
to describe. This makes the determination of ‘worst case’ 
biases difficult, while this is the only way to get a tight 
upperbound on the overall performance. Further research 
will be required to resolve this issue. 
 
The mid-value selection scheme has proven to be much 
easier to describe and bounds on its performance have 
been given. This algorithm provides less accuracy than the 
least squares solution. On the other hand, its sensitivity to 
errors is reduced, and no separate error detection 
algorithm is necessary.  
 

NOTES 

1 One could argue whether one should employ the actual values 
of the Bi

xr or just the fact that they are smaller or larger than i
xrh . 

Only exploiting the values of β 
i
xr, as has been done here, has the 

advantage that many computations can be done off-line. 
However, the Bi

xr values provide more information on the actual 
system performance.  
 

2 System continuity will be affected most when the multipath has 
opposite values on the different receivers. This will cause a 
maximum value of the test statistic while having no influence on 
the combined output at all.  
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APPENDIX A 
 
This appendix will show how the convolution of the pdfs 
of all contributions to the vertical position error is used to 
derive (6.1.3.6) - (6.1.3.8). In particular, the zero’th, first 
and second moment of these pdfs are computed (all higher 
order moments are zero and can be left out of this 
discussion). After that, the behavior of these moments 
under convolution is exploited to find the moments of the 
bound on the vertical position error pdf.  
 
When all receivers work well, the contribution of the ith 
channel to the vertical position error from either the 
ground or the airborne segment has been shown to be 
bounded by (see section 6) 
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When one receiver is in error, this contribution is bounded 
by 
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instead, with  
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Using the notation of [Jaynes94] for the zero’th, first and 
second moment of a real function g(x) : 
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the moments of the pdf bounding functions can easily be 
derived from the moments of the normal distribution. 
When g(x) = N(µ,σ2), its zero’th, first and second moment 
are known to equal 1, µ, and σ2 respectively. Note that 
when all higher order moments are zero, this is also true 
the other way around, and these values uniquely determine 
a normal pdf as well. The bound (A.2) found on the ‘no 
receiver errors’ behavior of the mid-value selection 
scheme is a zero mean normal pdf, and the following 
result for the ‘no errors’ bound on the pdf on the output of 
the ith channel is therefore obtained immediately: 
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Using the fact that the bound (A.4) in the ‘one failing 
receiver’ situation is nothing but twice a normal pdf, the 
moments for this case are readily computed as: 
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[Jaynes94, Appendix C] shows how the moments of the 
convolution of two functions (that are not necessarily 
pdfs!) can be computed from the moments of these 
functions. Generalizing the results to the convolution of N 
functions gi(x) with all first moments zero the expressions 
become 
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It follows from (6.1.3.5) that in the case of no receiver 
errors, )ˆ( vpdf ∆  is bounded by the convolution of NC 
functions iaerrnof ,,_ and NC functions igerrnof ,,_ . With 
(A.8)-(A.10), the first three moments of the bound can be 
computed to equal 
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When one of the ground receivers is in error, the bound on 

)ˆ( vpdf ∆  becomes the convolution of NC functions 

iaerrnof ,,_  and NC functions igerronef ,,_ , and will thus 
have moments 
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Finally, when both an airborne and a ground receiver are 
failing, the convolution of NC functions iaerrf ,, and NC 
functions igerronef ,,_  gives bounds for )ˆ( vpdf ∆  with 
moments 
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