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ABSTRACT 
 
This paper discusses the performance of RAIM/AAIM in 
terms of the probabilities of missed and false detection of 
a position error of the navigator. The statistical indepen-
dence of position error and test statistic is exploited to 
compute missed and false detection probabilities from the 
distributions of position error and test statistic straight-
forwardly. 
 
We compute exact probabilities and computationally less 
involved approximations, as well as the probabilities that 
are obtained when using a conventional method [Leva96] 
that works in the measurement rather than the position 
domain. The results of the latter prove to be too 
pessimistic, and will therefore result in reduced 
RAIM/AAIM availability. We also show that representing 
the measurement geometry by the worst integrity 
measurement only, as is often done, is disadvantageous 
with respect to RAIM/AAIM availability. 
 
 

1. Introduction 
 
The goal of this paper is to show how the performance of 
Receiver or Aircraft Autonomous Integrity Monitoring 
(RAIM/AAIM) algorithms can be computed in terms of 
the probabilities of missed and false detection of a 
position error of the navigator, and how exact 
computations of these probabilities can be used to get a 
higher RAIM/AAIM availability compared to the 
conventional method of [Leva96]. 
 
After introducing the measurement model in section 2, 
position and noise estimation are discussed in section 3. 
Section 4 describes the formulation of the position error 
detection problem as a test between two hypotheses, and 
shows how to compute the probabilities of missed and 
false detection. Section 4.4 compares the formulation of 
this paper to current navigational practice, and outlines 
which assumptions are often made, and when these are 
violated. Computer computations with GPS constellations 
are presented in section 5. Finally, in section 6, we 
summarize the main conclusions that can be drawn from 
the results of these computations. 
 
 
2. The system model 
 
In this paper, we will assume that the relation between the 
measurements that the navigation system provides, and 
the actual position of the user, is given by an 
overdetermined linear regression model: 
 
 r r r

z H x= ⋅ +ν  (2.1) 
 
in which: 

 rz  : n-vector of measurements 
H  : n × m observation matrix  rx  : m-vector of unknowns (usually position, clock bias) rv  : n-vector with independent noise and biases in the 

measurements 



with n>m. 
 
The vector of unknowns will be called 'position', although 
it might contain other unknowns as well. The noise in 
(2.1) is assumed to be normally distributed with mean rµν  
and covariance Rν : 
 
 r r

ν µν ν~ ( , )N R  (2.2) 
 
We will refer to a nonzero mean noise rµν  as measurement 
bias, and to a nonzero mean position error r

µ∆ $x , to be 
defined in (3.7), as position bias. The weighted norm of a 
vector ry  will be denoted and defined by:  
 
 r r ry y R y

Ry

T
y−
−=1

2 1  (2.3) 

 
Usually the weightmatrix Ry

−1  is the inverse of the co-

variance of ry . 
 
 
3. Position and noise estimation 
 
The model (2.1) has two unknowns: the position and the 
momentary value of the measurement noise. In this 
section we will show, how both can be estimated from the 
measurements. 
 
When (2.2) holds, it is well known [Rao95] that the best 
(minimum covariance) linear estimation of the position is 
given by the weighted least squares solution of (2.1): 
 
 r r$x NzLS =  (3.1) 
 
with 
 

N H R H H RT T= − − −( )ν ν
1 1 1  (3.2) 

 
This estimation is normally distributed: 
 

( )r r$ ~ ,$ $x RLS x xN µ  (3.3) 
 
with mean and covariance: 
 

r r r
µ µν$x x N= +  (3.4) 

R H R Hx
T

$ ( )= − −
ν

1 1   (3.5) 
 
Instead of using the position (3.3) itself, it is often more 
convenient to use the distribution of the position error, 
that is just a shifted version of (3.3) and is therefore 
normally distributed as well: 
 

 ( )∆ ∆ ∆
r r r r$ $ ~ ,$ $x x x RLS LS x x= − N µ  (3.6) 

 
with 
 

r r
µ µν∆ $x N=   (3.7) 

R H R Hx
T

∆ $ ( )= − −
ν

1 1   (3.8) 
 
The linear model (2.1) can be seen as a decomposition of 
the measurement vector rz  into a deterministic part Hxr  
and a stochastic part rν . When we remove the estimated 
deterministic part, we obtain the best estimation of the 
noise vector, usually named the least squares residual: 
 

r r$νLS Dz=  (3.9) 
 
with 
 

D I H H R H H R I HNT T= − = −− − −( )ν ν
1 1 1   (3.10) 

 
The residual is normally distributed 
 

( )r r$ ~ ,$ $ν µν νLS RN  (3.11) 

 
with mean and covariance 
 

r r
µ µν ν$ = D  (3.12) 

R DR DT
$ν ν=  (3.13) 

 
Note that both the position and the noise estimation are 
unbiased when the measurements are unbiased, that is, 
when r

r
µν = 0 . 

 
 
4. Availability, position error detection and hypothesis 
testing 
 
The required navigation performance (RNP) parameters 
specify the maximum allowable position error for a 
certain phase of flight. We will denote this error by 
RNP x∆ $ . A navigation system has sufficient integrity when 
users can detect too large a position error with sufficiently 
high probability. Although not a safety matter, it is also 
important that the system does not give too many false 
detections. 
  
The detection problem is usually formulated as a test 
between two hypotheses. Assuming that the position co-
ordinates are defined in an orthonormal (Cartesian) frame, 
we would like to be able to distinguish between  
 

H no error x RNPLS x0

2 2( ): $
$∆ ∆

r
≤   (4.1a) 



and 

H error x RNPLS x1

2 2( ) : $
$∆ ∆

r
>  (4.1b) 

 
by use of some test statistic. Unfortunately, the position 
error is not observable. All we can do is to use the least 
squares residual (or, equivalently, a parity vector) instead. 
As can be seen from (3.7) and (3.12), measurement biases 
generally increase both the position error and the residual, 
and it is this relationship that can be exploited. Therefore, 
a suitable choice for the test statistic is the Sum of 
Squared Errors, that is nothing but the normalized squared 
norm of the least squares residual: 
 

SSE RLS R LS
T

LS= =−
−r r r$ $ $ν ν ν

ν
ν1

2
1  (4.2) 

 
In case of a large measurement bias, both position bias 
and SSE will become large, and therefore the ‘no error’ 
hypothesis is only accepted when SSE remains below a 
certain threshold: 
 

SSE SSE H is accepted
SSE SSE H is accepted

threshold

threshold

≤ ⇒
> ⇒

0

1

 (4.3) 

 
When we use the decision criterion (4.3) it can happen 
that we take a wrong decision and accept the wrong 
hypothesis. The two possible errors that can be made are 
called missed detection (accepting H0 unjustly) and false 
detection (accepting H1 unjustly). 

 
Because the test statistic and position error are statistically 
independent (see appendix A for a proof), the probability 
of missed detection (PMD ) can simply be expressed as the 
product of the probabilities of no detection and position 
error. Similarly, the probability of false detection (PFD) is 
the product of the probabilities of detection and no 
position error: 
 

P P P
P P P

MD pos error

FD pos error

= − ⋅

= ⋅ −

( )
( )

_

_

1
1

detection

detection

  (4.4) 

 
in which the following notations are introduced: 
 

P P x RNP
P P SSE SSE

pos error LS x

threshold

_ $( || $ || )
( )

= >

= >

∆ ∆
r 2 2

detection

 (4.5) 

 
A navigation system is only available when the 
probabilities of missed and false detection remain below 
the values that are specified by the RNP parameters. To 
know if the system is available or not, we need to compute 
these missed and false detection probabilities. We will 
deal with this computation in the remainder of this 
chapter. First of all, we need the distributions of position 

error and test statistic. These distributions are discussed in 
section 4.1 and 4.2. Unfortunately, they both depend on 
the unknown measurement bias. Section 4.3 will show 
how to deal with this problem by means of a worst case 
approach. In 4.4 we will shortly discuss the way 
navigation literature usually determines the missed and 
false detection probabilities. We outline the assumptions 
that are commonly made, and indicate when these are 
violated.  
 
 
4.1 The distribution of the test statistic 
 
The test statistic SSE is a normalized noncentral quadratic 
form in normal variables. As has been described 
extensively in RAIM literature, see for example 
[Brown96], it has a noncentral chi-square distribution 
with n-m degrees of freedom and a noncentrality 
parameter λSSE: 
 
 SSE n m SSE~ ( , )χ λ2 −  (4.1.1) 
 
with  
 

λ µ µ µ µν ν ν ν ν νSSE
T T TD R D R= =− −r r r r1 1

$ $  (4.1.2) 
 
As can be seen from (4.1.2) the noncentrality λSSE depends 
on the unknown measurement bias, as well as on the 
known measurement geometry that is reflected in D. The 
more favorable the geometry, the larger λSSE will become 
for a certain bias, and the easier it will be to detect it. 

 
 
4.2 The distribution of the position error 
 
Unlike the test statistic, the squared norm of the position 
error || $ ||∆

rxLS
2  is a nonnormalized noncentral quadratic 

form in normal variables:  
 

 ∆
r r r$x N NLS

T T2
= ν ν  with r r

ν µν ν~ ( , )N R  (4.2.1) 

 
for which we can define a noncentrality parameter 
similarly to (4.1.2) as 
 

′ =λ µ µν ν∆ $x
T TN N
r r

 (4.2.2) 
 
The accent in (4.2.2) indicates that this noncentrality is 
not belonging to a chi-square distribution. 
 
The distribution of (4.2.1) is discussed in great detail in 
[Johnson72]. Its probability density function is constant 
on all ellipsoids of the form [Tong90] 
  



∆ ∆
∆

r r$ ,$
$

x c cLS x R x
− = ≥−µ 1 0  (4.2.3) 

 
The RNP parameters require the position error to remain 
in the sphere given by 
 

∆ ∆
r$

$x RNPLS x≤  (4.2.4) 

 
The probability that the position error exceeds the 
required bounds is therefore described by the probability 
content of that part of the elliptical distribution that lies 
outside of the sphere (4.2.4). This situation is depicted in 
figure 1. 
 
Appendix B indicates how the position error distribution 
can be computed. The exact distribution function proves 
to be computationally expensive and is hard to tabulate, 
because a total of 2m parameters is involved. Therefore, it 
makes sense to investigate how it could be approximated.  
 
One possible approximation is described in [Lee95]. Lee 
uses the marginal distribution of that component of the 
position error that lies in the direction of the position bias, 
see figure 2. Clearly, this approach will always under-
estimate the position error probability. Lee uses the same 
approximation for the test statistic as well, and thereby 
overestimates the ‘no detection’ probability. The product 
of both approximations can therefore become both larger 
and smaller than the actual missed detection probability. 
This also applies to false detections. 
 
A second approach could be to use a normalized position 
error with a noncentral chi-square distribution. Geometri-
cally, normalization results in the use of the probability 
content of spheres instead of ellipsoids, see figure 3. 
Algebraically, we use the fact that the position error and 
its normalized variant are related by 
 

1 1
1 1

2 2

1 1

2

λ λmax $ $ min $ $( )
$ $

( )
$

R
x x

R
x

x
LS R x

LS
x

LS R x∆ ∆ ∆ ∆
∆ ∆ ∆− − − −≤ ≤
r r r  

   (4.2.5) 
where λmin $( )R x∆

−1  and λmax $( )R x∆
−1  are the smallest and 

largest eigenvalues of R x∆$
−1 , to get the following 

upperbound on the ‘position error’ and ‘no position error’ 
probabilities: 
 

P P x R RNPpos error LS x x_
$

min $ $( $ ( ) )≤ > ⋅−∆
∆

∆ ∆
r

R x
-1

2
λ 1 2  (4.2.6) 

 1 1 2− ≤ < ⋅−P P x R RNPpos error LS x x_
$

max $ $( $ ( ) )∆
∆

∆ ∆
r

R x
-1

2
λ  (4.2.7)

  
in which the normalized position error has a noncentral 
chi-square distribution 
 

∆ ∆ ∆
∆

∆ ∆
r r r$ $ $ ~ ( , )

$
$ $x x R x mLS R x

LS
T

x LS x−
−=1

2 1 2χ λ  (4.2.8) 

 
with noncentrality 

 
λ µ µ µ µν ν∆ ∆ ∆ ∆ ∆$ $ $ $ $x x

T
x x

T T
xR N R N= =− −r r r r1 1  (4.2.9) 

 
Advantage of this approximation is, that it always stays on 
the ‘safe side’, unlike the approximation of Lee. Because 
it uses spheres, or, in two dimensions, circles, we will 
refer to it as the ‘circle approximation’ in the remainder of 
this paper. 
 
 
4.3 Missed and false detection probabilities 
 
This section will explain how the probabilities of missed 
and false detection can be computed. We have showed 
that the distributions of the position error and the test 
statistic both contain an unknown measurement bias. 
Therefore, we can only start computing after having made 
the following assumptions on that bias: 
 
• during normal system operation all measurements are 

unbiased, that is, r
r

µν = 0  
• when satellite i is in error, the corresponding element 

of rµν  can have any value 
• the probability that a satellite is in error in a certain 

sample (PS) is known 
 
For simplicity we will assume that at most one 
measurement is biased simultaneously. However, the 
concept that is discussed can be applied equally well in 
the multiple failure case, see [Ober96a][Ober96b]. 
Because we assume that at most one measurement is 
biased, a sample can contain either zero or one biased 
measurement. The probabilities of missed and false 
detection are nothing but the sum of the missed and false 
detection probabilities under the zero and one bias case: 
 
 P P PMD MD MD= +0 1  (4.3.1) 

P P PFD FD FD= +0 1  (4.3.2) 
 
These probabilities can be written as the product of the 
occurrence of the zero or one bias case and the conditional 
probability that a missed or false detection results: 

 
P P PMD no bias MD no bias

0 = ⋅_ | _  (4.3.4) 

P P PMD bias i MD i
i

n
1

1
= ⋅

=
∑ _ |

 (4.3.5) 

P P PFD no bias FD no bias
0 = ⋅_ | _   (4.3.6) 



 P P PFD bias i FD i
i

n
1

1

= ⋅
=
∑ _ |

 (4.3.7) 

 
in which the following notations are introduced: 
 
PMD|i :  conditional probability of missed detection 

when measurement i is biased 
PFD|i :  conditional probability of false detection 

when measurement i is biased 
PMD|no_bias: conditional probability of missed detection 

when no measurement is biased 
PFD|no_bias: conditional probability of false detection 

when no measurement is biased 
Pno_bias:  probability that no measurement is biased 
Pbias_i:   probability that measurement i is biased 
 
The probabilities that a sample contains no biases, or a 
bias in measurement i, are a function of the probability of 
a satellite failure PS and the number of measurements n: 
 
 P P Pbias i S S

n
_ ( )= − −1 1  (4.3.8) 

 P Pno bias S
n

_ ( )= −1  (4.3.9) 

 
and are therefore assumed to be known. In case of no bias, 
the distribution of position error and test statistic are fully 
known as well, and the computation of PMD|no_bias and 
PFD|no_bias is straightforward. Because no information is 
available on the behavior of erroneous satellites, we do 
not know anything, not even statistically, about the size of 
occurring biases. The only thing we can do is to assume 
that this bias has the ‘worst possible size’, that leads to the 
highest probabilities of missed and false detection. The 
next section explains how this approach can be applied. 

 
 

4.3.1 Computing worst case probabilities 
 
We will now discuss the computation of the worst case 
measurement biases that maximize the probability of 
either missed or false detection (PMD|i or PFD|i). 
 
We consider the case in which the ith measurement is 
biased. The measurement bias will then have the 
following form: 
 

r
L Lµ µν

( ) [ ]i
i

i

T= 0 0 0 0  (4.3.1.1) 

in which µi is unknown. 
 
The measurement bias influences the noncentralities of the 
distributions of both the test statistic and position error (or 
its normalized version (4.2.8)). It is important to see that 
the ratio between these two noncentralities is independent 
of µi: 
 

ratio i
N N

D R D
x

i

SSE
i

T
ii

T
ii

( )
( )
( )

( )
( )

$
( )

( )=
′

= −

λ µ
λ µ

ν

ν ν

∆

r

r 1
 (4.3.1.2) 

 
in which the noncentralities are just the ones from (4.2.3) 
and (4.1.2) with their dependence on the measurement 
bias made explicit. This ratio measures the coupling 
between position error and test statistic: the smaller the 
ratio, the better the test statistic represents the error in the 
position. 
 
Figure 4 shows how (4.3.1.2) can be interpreted as the 
slope of the square position error plotted against the test 
statistic in the noiseless case. When noise is added, we get 
a scattered cloud that describes the stochastic relation 
between test statistic and position error for a certain 
measurement bias. 
 
As becomes clear from the figure, a large ratio gives a 
large probability of missed detection, while a small ratio 
implies a large probability of false alarm. These 
probabilities will also depend on the size of the 
measurement bias. Because this size is unknown, we will 
have to take a worst case approach. The worst case value 
of µi will depend on all of the following parameters: 
 

• the threshold of the test statistic SSEthreshold 
• the allowed position error RNP x∆$  
• the noise covariance matrix Rν (quality and 

number of measurements) 
• the ratio (4.3.1.2) 

 
Unfortunately, the worst case value can generally not be 
found analytically, and will have to be computed 
iteratively by maximizing PMD|i and PFD|i explicitly as a 
function of µi.  
 



 
4.4 Navigational practice 
 
In this section, we will shortly discuss the conventional 
way of looking at RAIM/AAIM algorithms. In 4.4.1 we 
will illustrate the way performance of RAIM/AAIM is 
often computed by measuring error detection power in the 
measurement rather than the position domain. Section 
4.4.2 describes how the measurement geometry is 
generally represented by one scalar integrity metric 
instead of the n different ratios (4.3.1.2). 
 
 
4.4.1 The measurement bias formulation 
 
In much of the navigation literature [Leva96], RAIM and 
AAIM performance are computed using a measurement 
bias detection formulation 
 

 H no error

H error
0

1

0

0

( ):

( ):

r r

r r
µ

µ
ν

ν

=

≠
 (4.4.1)

  
rather than the position error formulation from (4.1). 
 
Based on (4.4.1) the probability of missed detection is 
often defined as the probability of an undetected 
measurement bias rather than that of the unallowable 
position error of (4.1). The norm of the bias is taken such, 
that the resulting position bias equals RNP x∆ $ . In figure 5, 
we have indicated the missed detection probability that is 
obtained by PMD,conv. The false detection probability 
PFD,conv is defined as the probability that a detection occurs 
while r r

µν = 0 . 
 
It is hard to say beforehand whether PMD,conv is an under- 
or an overestimation of PMD. In figure 5, we can see that 
for a given measurement bias only part of the area of 
PMD,conv falls into the missed detection region. Because not 
every undetected measurement bias will cause an 
unallowable position error, PMD,conv could be considered to 
be too conservative. On the other hand, the size of the 
measurement bias that is chosen to determine PMD,conv is 
usually larger than the ‘worst case’ measurement bias as 
discussed in section 4.3, as was already reported in 
[Lee95]. Therefore, it is just as well possible that PMD,conv 
is an underestimation of the worst case missed detection 
probability. For PFD,conv, similar arguments hold. 
 
Note that the definition of PMD,conv implicitly assumes that 
no missed detections occur when no bias is present. In our 
original notation, this assumption looks like: 
 P PMD MD

0 1<<  (4.4.2) 
 
This assumption will only be valid when the accuracy is 
much higher than the allowed position error. However, 

when the position solution and test statistic are more 
noisy, the missed detection probability under unbiased 
operation might not always be negligible. A similar 
assumption is made in the traditional definition of the 
false detection probability; false detections are assumed to 
occur only when there are no measurement biases: 
 
 P PFD FD

1 0<<  (4.4.3) 
 
As can be seen from (4.3.6) and (4.3.7), this is only true 
when the probability of bias-occurrence is much lower 
than the false alarm probability with no biases present 
(Pbias_i << PFD|no_bias).  
 
 
4.4.2 Representing measurement geometry by a scalar 
integrity metric 
 
Of all parameters that influence the worst case value of a 
measurement bias, only the ratio (4.3.1.2) differs for 
different measurements. To simplify the use of 
geometrical considerations, the geometry is often 
described only by the worst case ratio over all 
measurements, rather than by all ratios separately. When 
considering missed detection probabilities, this leads to 
the use of the following metric of integrity, called the Bias 
Integrity Threat [Ober96b]: 
 
 BIT ratio i

i
= max ( )  (4.4.2.1) 

 
which is similar to the well known integrity DOP (δHmax) 
when all measurements have the same standard deviation. 
 
Although to the best knowledge of the author this has not 
been done before, we could define a similar metric to 
represent the worst case influence of geometry on the 
probability of false alarm. We will call this metric the 
Bias Alarm Threat: 
 
 BAT ratio i

i
= min ( )  (4.4.2.2) 

 
When we represent the geometry by the worst case 
measurement only, we have to compute the worst case 
PMD|i and PFD|i only for the measurement with the highest 
and lowest ratio respectively. When the measurement with 
the highest ratio has index hi, and the one with the lowest 
ratio index li, this simplification provides the following 
upperbounds on (4.3.5) and (4.3.7): 

P n P PMD bias i MD hi
1 ≤ ⋅ ⋅_ |   (4.4.2.3) 

P n P PFD bias i FD li
1 ≤ ⋅ ⋅_ |  (4.4.2.4) 

 
in which PMD|hi is a function of the BIT, and PFD|li a 
function of the BAT. Obvious advantage of this approach 
is that the search for the 'worst case' bias size has to be 



performed only once. A disadvantage is the loss of 
availability due to the overestimation of the missed and 
false detection probabilities. 
 
 
5. Computations 
 
Having described the ins and outs of the ways to compute 
RAIM/AAIM performance in the position domain, we 
will now present the results of some computations that 
were done with actual GPS constellations. These 
computations investigate the accuracy of the discussed 
position error approximations and the effect they have on 
the resulting missed and false detection probabilities. 
They also examine the correctness of the conventional 
approach from section 4.4. 
 
More in particular, the computations are designed to give 
insight in: 
 
• The difference between the exact worst case missed 

and false detection probabilities and those obtained 
using: 
1.  The circle approximation ( position error only)  
2.  Lee’s approximations (for both position error and 

test statistic)  
3.  The conventional approach 

• The effect of representing the measurement geometry 
by the worst integrity measurement only  

• The validity of the assumption that the probability of 
missed detection in the no bias case is negligible 

• The validity of the assumption that the probability of 
false detection in the case of biases is negligible 

• The optimality of the conventional way of choosing a 
threshold for the test statistic 

 
We consider navigation with GPS only, and assume that 
the probability that a satellite is in error in a certain 
sample equals [Shively93]  
  
 P TS sample= ⋅ ⋅ ⋅−127 10 8. s-1  (5.1) 

 
in which Tsample is the time between two decisions. In the 
simulations we will take the following values, 
corresponding to the RNP requirements for aircraft 
nonprecision approach [Graas96]: 
 
  

 Tsample = 10 s  
RNP x∆ $ = 555 m 

 
The standard deviation of the measurements is 33 m. 
 
An exact, optimal choice of SSEthreshold is very hard to 
find. If we would like to have a constant probability of 
false or missed detection, this would mean that we have to 
fix a sum of n+1 probabilities that all depend on both the 
threshold and the geometry. In this paper, we will not 
bother with optimal threshold selection, and just take the 
thresholds as they are conventionally determined by fixing 
PFD,conv (see section 4.4.1 and figure 5). Unfortunately, 
due to a problem in the software, the used threshold varied 
with the number of satellites in the computation, see table 
5.1. Although this influences the absolute values of the 
probabilities that are computed, we don’t expect this 
problem to have a major impact on the comparison of the 
different methods. 
 
In all computations, we look at GPS constellations that 
occur at 4 large European Airports: Amsterdam, London, 
Frankfurt and Rome, taking a sample every 15 minutes 
during 24 hours. All computations are performed with an 
accuracy of 10-10. Therefore, we exclude samples with 
missed or false detection probabilities that are smaller 
than 5×10-10 from the figures that are presented. We 
consider the detection of horizontal position errors only. 
 
 
5.1 Comparison of position error approximations 
 
First of all, we have investigated the two position error 
probability approximations of section 4.2 for biases of 
known size. In each constellation, the satellite with the 
worst integrity (largest ratio (4.3.1.2)) has been given 
three different biases, causing position errors of 400, 550 
and 650 meters respectively. We have computed exact and 
approximated probability of a position error for these 
three cases. The result are given in table 5.1.1, from which 
we can draw the following conclusions: 
 
• Both approximations are becoming better when the 

position bias grows 
• The ‘circle method’ always overestimates the position 

error probability, and overestimates grossly for small 
position biases with a very small position error 
probability 

• Lee’s method always underestimates the position 
error probability slightly 

 
In section 5.3 the effect of the position error approxima-
tions on the missed and false detection probabilities will 
be further investigated.  
 
 



5.2 Assumptions on the causes of missed and false 
detections 

 
As we have seen in section 4.4.2, it is often assumed that 
missed detection are always caused by measurement 
biases, and never by noise only. Likewise, false detections 
are supposed to happen only when there are no 
measurement biases. The validity of these two 
assumptions is investigated in sections 5.2.1 and 5.2.2. 
 
 
5.2.1 Missed detections only occur when there are 
biases 
  
In table 5.2.1.1 we present the contribution of the 
probability of missed detection under the no bias case 
( PMD

0 ) to the total probability ( P PMD MD
0 1+ ). As we can see, 

this contribution is generally very small, but in the 5 
satellite case, situations occur in which PMD

0  even 
dominates. In these cases, GPS was not meeting the 
accuracy requirements, and should have been considered 
‘not available’. We therefore conclude that the assumption 
is valid for the parameter values that were used, as long as 
GPS performs within the required accuracy. 

 
 
5.2.2 False detections only occur when there are no 
biases 
 
Table 5.2.1.1 also shows the percentage of the 
contribution of the probability of false detection in the one 
bias case ( PFD

1 ) to the total probability ( P PFD FD
0 1+ ). As 

we can see, this contribution is very small in all cases, and 
the assumption that it is negligible seems valid for the 
used parameter values. We have observed that in the case 
of a bias, the conditional false detection PFD|i becomes 
close to one for most of the satellites, except for those 
with a very high ratio (4.3.1.2). We can thus conclude that 
the occurrence of a bias is just too unlikely to reveal this 
high value of PFD|i in the total false detection probability. 
 

 
5.3 Comparison of maximum missed and false 
detection probabilities 
 

We will now examine the missed and false detection 
probabilities from (4.3.1) and (4.3.2). We compute both 
exact and approximated maximum false and missed 
detection probabilities, using the position error approxi-
mations and the conventional method. It should be noted 
that in all cases, we consider each satellite separately. The 
effects of using the ‘worst integrity’ satellite only will be 
discussed in section 5.4. 
Because a strong influence of the number of available 
satellites is to be expected, we have used ‘best accuracy’ 
subconstellations of 5, 6 and 7 satellites, instead of the all 
in view constellation. Table 5.3.1 and 5.3.2 show the 
results. They give probability ratios of all approximated 
probabilities and their exact counterparts. A ratio larger 
than one corresponds to an overestimation, a ratio smaller 
than one to an underestimation of the exact value. 
 
We can conclude that: 
 
• The circle method always overestimates the worst 

case missed detection probability PMD, sometimes 
largely when only 5 or 6 satellites are in view 

• The results that Lee obtains are generally quite 
accurate, but a few gross underestimations of PMD 
occur for the 5 satellites case 

• The conventional approach always overestimates the 
worst case PMD 

• Both the circle and the conventional method get 
accurate results for the worst case false detection 
probability PFD , but a few gross underestimations of 
PMD occur with 5 satellites in view 

• Lee’s method underestimates PFD, and this gets worse 
for an increasing number of satellites 

• The selected threshold is accurate 
 
Lee’s method gives good results for the missed detection 
probability only. It always underestimates the position 
error probability, but overestimates the ‘no detection’ 
probability, giving a rather accurate product most of the 
time. PMD

0  is underestimated largely, but dominates only in 
a few samples (see section 5.2). For these samples the 
conventional method, that completely ignores PMD

0 , gives 
large underestimations as well. For the false detection 
case, the underestimated detection probability is not 
sufficiently compensated by the overestimated ‘no 
position error’ probability, that has very small absolute 
values, and too low false detection probabilities are 
obtained as a result.  
 
The results of this section have an important implication: 
due to the overestimation of the missed detection 
probability in the conventional approach, RAIM/AAIM 
availability studies based on this approach are generally 
too pessimistic. As we will show in the next section, the 
custom to represent geometry by the worst integrity 

  
 PFD,conv 

5 satellites  5.5 × 10-5 
6 satellites  9.8 × 10-5 
7 satellites 13 × 10-5 
8 satellites 16 × 10-5 

Table 5.1. PFD,conv values on which SSEthreshold is based



satellite tends to give an even stronger overestimation of 
PMD. 
 
 
5.4 Effect of using worst integrity satellite only 
 
To see what is the influence of using only the worst 
integrity satellite (‘worst’ in terms of probability of 
missed detection probability of a bias on that satellite) in 
order to simplify computations, as discussed in section 
4.4.2, we have compared the upperbound (4.4.2.3) to the 
exact missed detection probability, under the assumption 
of the occurrence of a bias. The results are summarized in 
table 5.4.1. The entries of this table lie between one and 
the number of satellites n: a one indicates an equal 
contribution to PMD

1  of each satellite, an n means that only 
one single satellites contributes significantly.  
 
We can conclude the following: 
 
• The less satellites are available, the better the 

upperbound fits the exact value of the missed 
detection probability, due to the fact that multiple 
satellites contribute substantially to PMD 

• In the case of 7 satellites, only the worst case 
integrity satellite contributes significantly 

• An increase in availability is to be expected when we 
compute missed detection probabilities PMD|i for 
every satellite instead of using the ‘worst integrity’ 
satellite only 

 
Table 5.4.2 gives the overestimation factors that are found 
with the conventional method combined with using only 
the worst integrity satellite, incorporating both of the 
effects discussed in section 4.4. It makes clear that 
conventional performance computations give highly 
pessimistic values for missed detection probabilities, and 
therefore for RAIM availability, and they will label 
certain constellations ‘unavailable’ while both missed and 
false detections are sufficiently small. The only cases in 
which they give an underestimation are the ones in which 
there is insufficient position accuracy. 
 
 
6. Conclusions and recommendations 
 
In this paper, we have shown how to compute the 
performance of RAIM in the position domain, and 
compared this performance to the one obtained with the 
conventional measurement domain based method. 
 
Computations for GPS show that the conventional 
method: 
 
1. overestimates the missed detection probability in case 

of a bias in a certain measurement 

2. often represents geometry by the worst integrity 
measurement only, instead of all measurements 
separately, leading to an even larger overestimation 
of the missed detection probability 

 
Both effects lead to a decreased RAIM availability. 
Availability can be improved easily by using the bias 
detection probability on a per measurement basis, rather 
than just using the ‘worst integrity’ measurement only. It 
will be more difficult to exploit the advantages of exact 
position domain computations, because the computation 
of exact missed and false detection probabilities is very 
time consuming. The approximations that were discussed 
in this paper are either inaccurate or possibly 
underestimating, and closer and computationally efficient 
upperbounds should be found in order to take full 
advantage of the insights provided in this paper. 
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Appendix A. Independence of position error and test 
statistic 
 
The position error and the test statistic are distributed 
independently. This can be shown as follows. In 
[Johnson72], it is proved that when r

ν  is normally 
distributed 
 
 r r

ν µν ν~ ( , )N R  (A.1) 
 
two quadratic forms 

r r
ν νT A  and 

r r
ν νT B  (A and B positive 

semi-definite) are independent if and only if 
 
 R AR BRν ν ν = 0  (A.2) 
 
The position error and test statistic are two examples of 
such quadratic forms with 
 
 A N NT=  (A.3) 
 B D R DT= −

ν
1  (A.4) 

 
We just have to substitute (A.3) and (A.4) in (A.2) to get 
the following sufficient condition for their independence: 
 
 R N NR D R DRT T

ν ν ν ν
− =1 0   (A.5) 

 
which is fulfilled because  
 
 NR DT

ν =  

= ⋅ ⋅ −− − − − − −( ) ( ( ) )H R H H R R I R H H R H HT T T T
ν ν ν ν ν

1 1 1 1 1 1

= −
=

− − − −( ) ( )H R H H H R H HT T T T
ν ν

1 1 1 1

0
 (A.6) 

 
 

Appendix B. The distribution of quadratic forms in 
normal variables 
 
In [Johnson72] the distribution of general quadratic forms 
in normal variables is discussed. Although we can not go 
into much detail here, we will indicate shortly how the 
computation of the distribution function can be done. 
Johnson shows, that the distribution function of a 
quadratic form in n normal variables 
 
 Q AT=

r r
ν ν  with r r

ν µν ν~ ( , )N R  (B.1) 
 
with A positive semi-definite, can be computed as a sum 
of chi-square distribution functions: 
 

 P Q Q e P n j
Q

j
j

( ) ( )lim
lim< = + <

⎛
⎝
⎜

⎞
⎠
⎟

=

∞

∑ χ
β

2

0
2  (B.2) 

 
for some suitably chosen constant β. Expressions for the 
coefficients ej and for β can be found in [Johnson72] and 
[Ruben62]. These references also provide upperbounds of 
the error that is made when the series from (B.2) is 
truncated. Because different chi-square distribution 
functions are used in each of the terms of (B.2), that each 
have to be computed by a series expansion as well, 
computation is very involved. 
 



 

 PMD,conv worst sat only / ( )P PMD MD
0 1+ exact 

 min mean max 
5 sats 0.0593 5.9696 9.9171 
6 sats 5.9755 8.8876 11.8348 
7 sats 13.2383 13.6446 13.8959 

Table 5.4.2 The ratio of the missed detection 
probability using the worst integrity satellite only and 
the conventional method, and the exact value 

 
 

Ppos_error 
 Exact 

Ppos_error 
 Circle 

Ppos_error 
 Lee 

450 m  0.00014  0.115  0.00011 
550 m  0.440  0.897   0.433 
650 m  0.995  0.999  0.995 

Table 5.1.1 Mean values of the exact and approximated 
position error probabilities as a function of the position bias 

 PMD
0 /( P PMD MD

0 1+ ) PFD
1 /( P PFD FD

0 1+ ) 
 min mean max min mean max 
5 sats 0 0.0075 0.9833 0.0048 0.0097 0.0114 
6 sats 0 0 0.0013 0.0061 0.0075 0.0077 
7 sats 0 0 0 0.0063 0.0066 0.0067 

Table 5.2.1.1 The contributions of missed detections occurring when there is 
no bias, and of false detections occurring when there is, to the total missed 
and false detection probabilities 

 ( )P PMD MD
0 1+  circle / ( )P PMD MD

0 1+  exact ( )P PMD MD
0 1+  Lee / ( )P PMD MD

0 1+  exact PMD,conv / ( )P PMD MD
0 1+  exact 

 min mean max min mean max min mean max 
5 sats 1.0000 2.1797 20.2616 0.0167 0.9895 1.1854 0.0201 1.3050 2.3349 
6 sats 1.0005 2.4540 17.0038 1.0005 1.1297 1.2563 1.0004 1.5386 1.9871 
7 sats 1.3817 1.8326   2.2320 1.3469 1.3996 1.5020 1.8912 1.9492 1.9851 

Table 5.3.1 The ratios of approximated and exact worst case missed detection probabilities, computed with the circle and 
Lee’s approximation and with the conventional method respectively 

 ( )P PFD FD
0 1+  circle / ( )P PFD FD

0 1+  exact ( )P PFD FD
0 1+  Lee / ( )P PFD FD

0 1+  exact PFD,conv / ( )P PFD FD
0 1+  exact 

 min mean max min mean max min mean max 
5 sats 1.0000 1.0005 1.0050 0.5024 0.5049 0.5057 0.9886 0.9903 0.9952 
6 sats 1.0000 1.0001 1.0016 0.0940 0.0953 0.0955 0.9923 0.9925 0.9939 
7 sats 1.0000 1.0000 1.0004 0.0283 0.0288 0.0288 0.9933 0.9934 0.9937 

Table 5.3.2 The ratios of approximated and exact worst case false detection probabilities, computed with the circle and 
Lee’s approximation and with the conventional method respectively 

 PMD
1 worst sat only / PMD

1  exact 
 min mean max 
5 sats 2.5122 4.6332 5.0000 
6 sats 3.4533 5.8181 6.0000 
7 sats 7.0000 7.0000 7.0000 

Table 5.4.1 The ratio of the missed 
detection probability using the worst 
integrity satellite only, and the exact value 
(in case of a bias) 



Figure 1. The position error probability is the probability content of an elliptically contoured distribution outside the error region 
that is allowed by the required navigation performance parameters 
 

 
Figure 2. The position error probability as estimated by Lee (dark area). Clearly, this is always an underestimation of the actual 
probability (dark and light area). 



 
Figure 3. An upperbound on the position error probability can be found by using the circle-shaped areas of the distribution of 
the normalized position error, instead of the ellipses of the distribution of the position error. 
 

 
Figure 4. The probabilities of false and missed detection depend on the size of the measurement bias and of the slope of the 
relation between position error and test statistic.  

>≥  



 
Figure 5. The conventional way of defining the probabilities of false and missed detection. False detection are detections 
generated when there is no position bias, missed detections occur when there is a measurement bias but no detection. 
 
 
 




