
Accuracy and Integrity of Nonlinear Systems 
 

P.B. Ober 
Delft University of Technology - Telecommunications and Traffic Control Systems Group 

  
 
 
 
 

BIOGRAPHY 

Bastiaan Ober’s areas of experience include the influence 
of multipath on GPS positioning, carrier phase differential 
GPS, ambiguity resolution and integrity monitoring, 
especially for aviation applications. He is currently 
working as a Ph.D. student doing research on integrity 
design and analysis of integrated navigation systems for 
safety critical applications.  
 
ABSTRACT 

Although measurements and position are often related in a 
non-linear fashion, system models and computations 
usually exploit a linearized model. The paper provides 
insight in the amount of error that is introduced by this 
approximation. It shows why and how extra errors are 
introduced, estimates the sizes of these errors and 
quantifies the influence on system accuracy and integrity. 
 
1. INTRODUCTION 

Although in most systems the relation between 
measurements and position is nonlinear, the assumption 
that the relation between the position and the 
measurements is sufficiently well described by a linear 
regression model is widespread. Throughout navigation 
literature, the linear model plays an important role, as an 
advertisement of the course “Aviation system 
performance analysis using the linear model” [Kelly] 
shows: 

 
All standard documents employ the linear model as their 
common conceptual basis. Specs and requirements are defined 
in this context. One must understand the linear model in 
order to comprehend GPS monitoring and many other 
operations. Even more important, each user will be required 
by the FAA to demonstrate its compliance with FAA 
standards in terms of a linear model. 

 
Thus, even though the linear model is only an 
approximation, it serves as a reference point within the 
navigation community. A major reason for the popularity 
of the linear model is the availability of a well-developed 
theory, which provides insights that are valuable even in 
case the model is not fully accurate.  Of course, it remains 

important to study the validity of the assumption that the 
results obtained with the linear model describe the non-
linear model it approximates ‘sufficiently well’ in some 
sense.  
 
The paper investigates to what extend a nonlinear system 
be described by this linearized model. It can be seen as an 
attempt to quantify the gap between the nonlinear model 
and its linear approximation in terms of both accuracy and 
integrity.  
 
The approach taken is straightforward. The position is 
determined by non-linear least-squares. Instead of using a 
linear approximation to describe the properties of the  
position estimation that is obtained, a second order 
quadratic approximation is exploited and used as a ‘truth-
reference’ to assess the correctness of the linear model. It 
is shown that the non-linear case can suffer from an 
increased sensitivity to noise and biases, and can in fact 
be written in a linear form with a non-linearly increased 
amount of noise. 
 
2. THE LINEARIZED SYSTEM MODEL 

We will assume in this paper that the relation between the 
n measurements z and the m unknowns u, that can for 
example represent the position, are given by:  

nuhz += )(  (2.1) 

in which n represents the measurement noise and errors. 
We will use the usual assumption that the noise is 
normally distributed with mean

n
µ and covariance nΣ . In 

the absence of system failures 0=
n

µ . When distributions 

are centered on zero, we will call them unbiased. When 
they are not, they are biased and the mean is sometimes 
referred to as the bias in the distribution. 
 
For a given set of measurements, a least squares estimated 
solution û  can be found by minimizing the norm of the 
residual r: 

)ˆ(uhzr −=  (2.2) 

Such a minimum norm is readily found by the Gauss-



Newton method, also known as the linearization method, 
although other methods might be applied as well 
[Ratkowsy83]. Given an initial guess 0û  of the 
unknowns, a linear approximation of h is obtained as the 
first order Taylor approximation: 

0ˆ0 0
)ˆ()( uHuhuh u ∆−=  (2.3) 

in which the position estimation error is written as: 

uuu −=∆ 00 ˆ  (2.4) 

The n×m matrix 
0ûH contains the first derivatives of the 

elements of z to the elements of u and is defined as 
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where [i] denotes the ith element of each vector. 
Substituting this in (2.2) gives a linear expression for the 
residual: 

nuuHuhzr u +−=−= )ˆ()ˆ( 0ˆ00 0
 (2.6) 

It is well known [Rao95] that the residual r0 is minimised 
for 1ûu = with 
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in which the ‘+’ denotes the pseudo-inverse: 
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Substituting 1û in (2.2) again, an improved linear 
approximation of h is obtained, a better estimator can be 
derived, again leading to a better linearization…. The 
iteration ends when the estimated value doesn’t change 
anymore and the so-called likelihood equations are 
obeyed: 

0))ˆ((
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The estimation deviation and the residual now obey the 
following linear relations: 

nHuuu u
+=−=∆ ˆˆ  (2.10) 

and 

nHHIr uu )( ˆˆ
+−=  (2.11) 

2.1 Accuracy and integrity within the linear model 

Performance analysis is usually based on the linear 
relations (2.10) and (2.11): to assess the accuracy of the 
position estimation, the covariance propagation rules are 
used to derive the position estimation covariance ûΣ  from 
the noise covariance nΣ as 

T
unuu HH ++Σ=Σ ˆˆˆ  (2.12) 

Similarly, the covariance of the residuals equals 

T
uunuur HHIHHI )()( ˆˆˆˆ
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For integrity, performance measures are often based on 
the propagation of measurement biases into both the 
position estimation and the residual, which is used for 
bias detection. When the measurement bias is 

z
µ , the 

position and residual biases simply become 

nuu
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and 
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A measure of integrity is the maximum ratio between this 
‘mean position error’ and ‘mean bias detection statistic’: 
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Often, the bias vector 
z

µ is of the form 
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corresponding to a single failure in the ith measurement. 
Integrity can then be represented by the maximum value 
of (2.16) over all possible single failure situations: 
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Note that both the value of (2.16) as (2.18) do not depend 
on the actual size of the bias, and can thus be computed 
without knowledge of this bias. 
 



Sometimes, other integrity measures that are closely 
related to these slopes are used. In this paper, we will use 
the so-called protection level (PL) that equals the 
maximum slope times the minimal detectable bias (MDB), 
the smallest bias that can be detected with sufficient 
probability (for details see [Leva96], where the MDB is 
called pbias): 

MDBSLOPEPL MAX ⋅=  (2.19) 

 
3. SECOND ORDER SYSTEM MODEL 

The approach we will take to investigate the quality of the 
linear system approximation is simple. We will exploit 
second instead of first order Taylor approximations of 
h(u). Using these second order approximations, we derive 
expressions for the bias and covariance of the estimated 
values and their residuals. 
 
In fact, two second order Taylor approximations will be 
required, one around an estimated solution û  and one 
around the true solution u :  
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When the quadratic approximation of h is valid, its second 
derivative Q is a constant 3-dimensional array that is 
independent of the value of u. It is convenient to view Q 
as n stacked matrices Qi, each containing the second 
derivatives of h[i] with respect to the elements of u: 
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In the following, a few simple rules for expressions 
involving the matrix stack Q will be used. For matrices A 
and B and vectors a and b of appropriate sizes: 
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Furthermore, the trace of a three dimensional array is 
defined as 

[ ]TnQtrQtrQtr )()( )( 1 L=  (3.4) 

We now have all the tools available to obtain expressions 
for the position error u∆ . Starting point is the residual, 

that using the second order expansion of )ˆ(uh can be 
written as 

∆∆−∆−= QuuHnr T
u 2

1  (3.5) 

Because the true position is unknown, it is preferable to 
use the following relation, obtained by adding the two 
equations of (3.1): 
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and write 
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Substitution in the likelihood equations gives: 

0)( 2
1

ˆ
1

ˆ =∆∆+∆−Σ− QuuHnH T
un

T
u  (3.8) 

and after multiplication with 1
ˆ

1
ˆ )( −−Σ un
T
u HH   

uQuHnHu T
uu ∆∆+=∆ ++
ˆ2

1
ˆ  (3.9) 

In accordance with [Seber89], we will eliminate the 
quadratic term in the estimation error by substituting the 
linear approximation nHu u

+=∆ ˆ . We finally arrive at the 
following expression for the estimation error: 

)(ˆ nAnnHu T
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with 
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We see that the nonlinearity of the system has the same 
effect as the introduction of some extra noise. When we 
define a modified noise term as: 

nAnnn T+='  (3.12) 

the expressions for the estimation error and the residual 
can conveniently be written in their usual forms (cf. (2.10) 
and (2.11)) as: 

'ˆ nHu u
+=∆  (3.13) 

and 
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The modified noise term acts as a kind of ‘experienced 
noise’ that incorporates both measurement noise and non-
linearity effects. 
 
3.1 Accuracy and integrity in the second order model 

The mean and covariance of the position estimation and 
residual are easy to compute from their linear relations 
with 'n , just like has been done in paragraph 2.1 for n. 
The same is true for the integrity related parameters (2.18) 
and (2.19).  
 
All that remains to be done is the determination of the 
mean and covariance of the modified noise vector. We 
will only give results here, without the lengthy proof (see 
for example [Mathai92]). The mean modified noise is 
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while the elements of its covariance equal: 
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It is important to note that due to the non-linearity of the 
system, normally distributed measurements will not lead 
to normally distributed estimation errors and residuals. 
Therefore, mean and covariance do not fully describe 
their distributions. However, taking higher order moments 
into account would make the analysis much more 
complicated, and is beyond the scope of this paper. When 
substantial influence of non-linearity is found, this might 
justify future studies in this direction.  
 
3.2 Comparing the models 

In this section, we will summarize the conclusions that 
can be drawn from the previous analysis. Looking at the 
no failure case, in which the measurements are unbiased 
and 0=

n
µ , we can see that:  
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in which the superscript (2) denotes ‘second order’. The 
position estimation is therefore biased even when the 
measurements are not. An explicit expression for the 
covariance of the position estimation error can easily be 
derived from (3.16) but we will avoid confusing the 
reader by writing it in explicit form here.  
 
From (3.16) we can see that even when the measurements 
are uncorrelated, the non-linearity acts as if the 
measurements were in translating the measurement to the 
position noise Furthermore, the elements of the 
measurement covariance matrix all grow: 
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and therefore, so will the covariance of the position 
estimation error. 
 
The situation becomes a bit more complicated when there 
are measurement failures. The  error in the estimation bias 
becomes larger: 
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and the changes in the ‘experienced measurement 
covariance’ get more pronounced.  
 
For integrity, it is also important to assess the effect of the 
bias on the residual that is used for error detection. The 
error made in the linear approximation can be expressed 
as: 
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For the integrity measure of (2.19) we can conclude, that 
possibly both nominator and denominator become larger 
due to the non-linearity. Also, the extra noise that is 
experienced, will require lowering of the threshold to be 
set for error detection. The overall result of these  
different effects is hard to predict; but it seems that the 
non-linearity can possibly both worsen and improve 
integrity. 
 
4. AN EXAMPLE 

The expressions for second order system approximation 
have been incorporated in NavSim, the navigation system 
simulator that is being developed at Delft University. 
Although the algorithms are not yet fully verified, first 
tests indicate they seem to work correctly; however, full 
verification will only be performed shortly after the ION-
GPS99 conference. 
 
Because of the insight they might provide, it might still be 
useful to present some preliminary results. In a first trial, 
the HDOP, horizontal position bias and horizontal 
protection level (HPL) have been computed for the GPS 
position integrity performance requirements from [DO-
208], from which all GPS system parameters are taken as 
well. 
 
For three random points, 12 hours of data have been 
collected with 2 minutes between the samples from stand-
alone GPS. The results are summarized in Table 1. 
 
Accuracy has been measured in terms of both the position 
bias and the HDOP within both the linear and second 
order model. It seems hardly affected: the maximum 



position bias is in the sub-millimeter range, and the 
increase in HDOP is hardly visible.  
 
Integrity has been measured in terms of the HPL. First, 
the first order model has been used to determine the worst 
case satellite (that reaches maximum SLOPE in (2.18)) 
and the size of the minimal detectable bias MDB on this 
satellite. The MDB is than used for substitution in (2.18) 
and (2.19) to determine the SLOPE and the HPL for the 
second order model. So, the ratio between the second and 
first order HPL is obtained at a specific value of the 
measurement bias only. This method does not give exact 
results: it might be that in the second order model another 
satellite becomes the worst case satellite. Furthermore, the 
MDB within the second order model might differ from the 
value used here (but can only be determined iteratively). 
The results indicate that on average the protection level 
decreases, although it improves in some cases. For the 
third simulation, the scatterplot of the second order HPL 
against the first order HPL is given in Figure 1. Most of 
the time, the second order HPL is significantly smaller 
than the first order HPL. 
 
5. CONCLUDING REMARKS 

Preliminary simulations seem to indicate that for stand 
alone GPS accuracy is hardly influenced by the presence 
of non-linearity. It seems that in the absence of  
measurement failures, the system is almost linear. 
Integrity however, seems seriously influenced. The results 
definitely justify more extensive research to use the 
theoretical framework presented in this paper to give 
more definite statements about the integrity of existing 
and future systems. 
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Table 1. Second order against linear approximation  
DOP(2)/DOP(1) Bias in m PL(2)/PL(1) 
Max Max  Min Mean Max 
1.0000 0.00015 0.02 0.76 1.58 
1.0000 0.000071 0.10 0.81 2.88 
 0.0000116 0.15 0.70 1.69 
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Figure 1. The second order horizontal protection level 
against the first order case. The black line indicated 
equality of these levels; points under the line imply a 
smaller protection level when second order 
approximation is used as compared to the linear 
approximation.  




