
RAIM PERFORMANCE:  
HOW  ALGORITHMS DIFFER 

 
P.B. Ober  

Delft University of Technology - Telecommunications and Traffic Control Systems Group 
 Mekelweg 4, 2628 CD Delft, The Netherlands 

 
 
 
 
 
 
 

BIOGRAPHY 

Bastiaan Ober’s areas of experience include the influence 
of multipath on GPS positioning, carrier phase differential 
GPS, ambiguity resolution and integrity monitoring. He is 
currently working as a Ph.D. student doing research on 
integrity monitoring algorithms for integrated navigation 
systems. 
 
ABSTRACT 

Pilots that want to fly Basic Area Navigation in ECAC 
airspace using stand-alone GPS will be required to check 
the availability of RAIM for the intended flight (route and 
time) before taking off. One means of doing this is by 
using the RAIM availability prediction software AUGUR, 
that has been developed by STASYS Limited for 
EUROCONTROL. The design of the AUGUR algorithm 
has been done by Delft University. 
  
The paper describes the considerations that have played a 
role in the selection of the RAIM prediction algorithm for 
AUGUR. One of the difficulties faced was to 
accommodate a wide range of different receivers with 
unknown RAIM implementations. The approach followed 
is to first categorise existing RAIM algorithms in a 
systematic way, to describe where they differ and what 
implications this has for their predicted performance. The 
resulting insights are then used to select an algorithm that 
obeys the requirements that are set by the JAA. 
  
1. INTRODUCTION 

From 23 April 1998 the carriage of equipment meeting 
the Basic Area Navigation (B-RNAV) became mandatory 
in all ECAC en-route airspace. The navigation 
requirements were based on the performance 
demonstrated by VOR/DME and multi-DME RNAV 
systems. However, many users saw stand-alone GPS as an 
economic means of compliance. Initially there was some 
doubt as to whether satellite navigation alone could 
provide sufficient integrity. Following a detailed review 

of aircraft systems, it was deemed by the Joint Aviation 
Authorities (JAA) that GPS can meet the B-RNAV 
requirements as long as the receivers are certified to TSO-
C129 [TSO-C129] (henceforth referred to as TSO-C129 
receivers) and obey some extra requirements laid down in 
[TGL-2]. Furthermore, GPS users will have to confirm 
during the pre-flight planning phase that the Receiver 
Autonomous Integrity Monitoring (RAIM) algorithm of 
their receiver will provide sufficient integrity for the 
intended flight (route and time), by using a prediction 
programme. Flight dispatch should not be made in the 
case where predicted continuous loss of RAIM of more 
than 5 minutes occurs for any part of the intended flight. 
A prediction programme, AUGUR has been developed by 
STASYS Limited for EUROCONTROL, and is made 
available through the World Wide Web. 
 
This paper focuses on the JAA requirement that addresses 
the choice of the RAIM algorithm that is to be used in the 
prediction: 
 

“The program should use either a RAIM algorithm 
identical to that used in the airborne equipment, or an 
algorithm based on assumptions for RAIM prediction 
which give a more conservative result”. 

 
More information on the other requirements for AUGUR 
will be made available in [Harriman98] that focuses more 
on operational and implementation issues. AUGUR itself 
can be found at http://augur.ecacnav.com (Europe) or at 
the US mirror site http://augur.us.ecacnav.com.  
 
AUGUR provides RAIM availability for both baro- and 
non-baro-aided GPS. Because the same algorithm is used 
for both cases, the sections on algorithm selection 
describe the non-baro-aided situation only.  
 
2. ALGORITH SELECTION APPROACH 

TSO-C129 certified receivers are required to perform 
Receiver Autonomous Integrity Monitoring (RAIM) to 
ensure that the majority of errors in GPS satellite signals 



can be detected before they cause large position errors. 
RAIM consists of two algorithms: an error detection 
algorithm, that detects actual satellite failures, and a 
‘geometry screening’ algorithm, that determines whether 
the measurement geometry is sufficiently strong to 
provide the required missed detection probability and 
alarm rate. Geometry screening consists of computing the 
error detection performance as a function of the geometry 
and deciding whether this performance meets the 
requirements. As geometry screening does not depend on 
the actual GPS signals, its behaviour can be predicted for 
any user position and time instant. AUGUR does such 
prediction with a purely operational goal: it aims at 
highlighting whether user receivers are likely to 
experience any RAIM outages during the flight. In other 
words: AUGUR tries to predict the behaviour of the 
RAIM availability algorithm in TSO-C129 receivers 
rather than anything else. 
 
The major problem in assessing receiver behaviour is that 
there are many different TSO-C129 receivers on the 
market. The RAIM algorithms used in these receivers are 
generally proprietary and thus unavailable in the public 
domain. In accordance with the JAA requirements, 
AUGUR must err on the safe side and give a conservative 
prediction when exact prediction is impossible. On the 
other hand, there is no need to sacrifice performance 
unnecessarily. The approach taken is therefore to be 
conservative within reasonable limits. These limits are set 
by the numerous algorithms and techniques that have 
been published in open literature. This paper assesses 
where conservative results can be expected from these 
techniques.  
 
This paper first shows how RAIM performance can be 
computed exactly as a function of the measurement 
geometry. It then shows which approximations and 
simplifications can be applied to arrive at practical, 
existing RAIM algorithms from open literature. This 
structured approach reveals very distinctively in which 
respect(s) algorithms might differ, and which differences 
in performance can be expected. In this way, this paper 
can serve as a ‘guide’ to different RAIM algorithms, and 
enables a structured classification of algorithms by listing 
the specific approximations and simplifications used by 
each one.  
 
Along the way, the paper justifies the choice of the 
geometry screening algorithm that has been implemented 
in EUROCONTROL’s AUGUR RAIM prediction 
software. The JAA requires that the performance of the 
implemented algorithm should be conservative. The final 
algorithm therefore incorporates all conservative  
approximations and simplifications that might be 
implemented in actual receivers. 
 

3. RAIM PERFORMANCE 

In [DO-208], RAIM performance is measured in terms of 
maximum allowable alarm rate and minimum detection 
probability (integrity), that both depend on 
 
• Satellite failure rate 
• Range accuracy 
• Measurement geometry 
 
Within the context of this paper, it will be assumed that 
the GPS range accuracy and the failure rate of the 
satellites are known. In that case, RAIM performance 
depends on geometry only, and RAIM availability 
prediction really becomes geometry screening.  
 
The performance parameters are usually specified in 
terms of probabilities per flight hour. For analysis of a 
navigation system, it is useful to translate these to the 
probabilities that certain events (such as ‘there is a 
position failure’ or ‘an error is detected’) occur in a 
certain samplei. These probabilities and their dependence 
on geometry are discussed in the coming paragraphs.  
 
3.1  Maximum alarm rate 

Because TSO-C129 receivers are not required to do 
failure exclusion, every detection of an error will cause an 
alarm. Detection can occur due to noise, while all 
satellites operate within specifications, or can be the result 
of satellites failure(s):  
 
 alarminducedfailurealarminducednoisealarm PPP ____ +=  
 
The probability that noise causes an alarm while all 
satellites function properly can be written as  
 
 OKsatsallalarmOKsatsallalarminducednoise PPP __|____ ⋅=  (3.1) 
 
when Palarm|all_sats_OK is the probability that an alarm is 
raised given the absence of satellite errors. An alarm can 
also be the result of a failure of one out of the N satellites 
in view, with an associated probability of: 
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in which Psat_failure is the probability that a satellite is in 
failure, and Palarm|sat_failure,i is the probability that an alarm 
is raised given the failure of satellite i. 
 
Because the probability that none of the satellites in view 
is failing simply equals: 
 
 N

failuresatOKsatsall PP )1( ___ −=  (3.3) 
 
the probability of alarm can be written as: 
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Expression (3.4) can be considerably simplified. Because 
TSO-C129 receivers are tuned to detect at least 99.9% of 
all significant satellite failures, almost all satellite failures 
will be detected and we can set Palarm|sat_failure,i ≈ 1. 
Furthermore, the probability of a satellite failure is very 
low, and thus (1-Psat_failure)N ≈ 1. Both these 
approximations are quite accurate and give slightly 
conservative alarm rates. Applying them gives the 
following expression for the probability of alarm:  

failuresatOKsatsallalarmalarm PNPP ___| ⋅+=  (3.5) 

TSO-C129 receivers are allowed to an alarm rate of 
6.67⋅10-5 per sample while the probability of the tracking 
a failing satellite failure is about 4.8⋅N⋅10-7 per sampleii. 
Therefore, the influence of satellite failures is relatively 
small and is often neglected to simplify (3.5) to 

OKsatsallalarmalarm PP __|=  (3.6) 

It is this equation (3.6) that is usually proposed to set the 
error detection threshold [Brenner90, Sturza88, Brown92, 
Leva96]. 

3.1.1 Alarm rate and AUGUR 
From the previous considerations, the question arises 
which alarm probability expression should be used in 
AUGUR. Although most literature references use (3.6), 
this gives slightly optimistic alarm rates and RAIM 
availability. AUGUR therefore assumes that receivers use 
equation (3.5) instead of (3.6). This will make the 
prediction slightly conservative when receivers actually 
use (3.4) or (3.6), which is in line with the JAA 
requirements. 
 
3.2 System integrity 

The integrity of a system is affected any time the error in 
the position exceeds the maximum allowed error, the so-
called horizontal alarm limit (HAL), while the RAIM 
error detection algorithm raises no alarm. In that situation, 
the system is said to provide Hazardous Misleading 
Information (HMI). In general, this can happen both in the 
absence and presence of a satellite failure. However, for 
en-route application, the probability of a position error 
caused by noise only is negligible as the nominal system 
accuracy is many orders of magnitude better than the 
maximum allowed position error. When the system meets 
the required 95% accuracy performance (100 meter) of 
[DO-208], the probability of HMI becomes virtually zero. 
Therefore only the situations with satellite failures will 

have to be taken into account, and the expression for the 
probability of HMI can be written as: 
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in which the probability of HMI given the failure of the ith 
satellite can be decomposed into: 
 

PHMI|sat_failure,i = Ppos_error|sat_failure,i ⋅ Pno_alarm| sat_failure,i (3.8) 
 
in which: 
 
Ppos_error|sat_failure,i : Probability of a position error in case of 

a failure in satellite i. 
Pno_alarm|sat_failure,i : Probability of no alarm in case of a 

failure in satellite i. 
 
3.3 The system model 

The previous paragraphs have shown that the system’s 
alarm (3.5) and missed detection probability (3.7) can be 
computed from the probabilities of the following three 
events: 
 
1. An alarm is raised in the absence of satellite failures 
2. An alarm is raised in case of a satellite failure 
3. A position error occurs in case of a satellite failure 
 
These probabilities can only be computed within the 
context of a specified GPS system model. Although the 
real system model is non-linear, virtually all literature on 
RAIM algorithms seems to assume that the relation 
between the GPS measurements and the user position is 
sufficiently well described by a linearised overdetermined 
regression model: 

ν
rrr

+⋅= xHz  (3.9) 

in which: 
 
zr :  N-vector of measurements 
H :   N × M observation matrix with N>M 
x
r :  M-vector of unknowns (position, clock bias) 
v
r :  N-vector with independent noise and biases in the 

measurements, normally distributed as 
v
r ~N( IGPS

2,σµν
r ) 

 
It is important to stress that the model (3.9) still contains 
an unspecified parameter: the mean noise vector νµ

r
. 

Unfortunately, there is no full knowledge of νµ
r

 present. 
When all satellites operate well, it is about zero. When on 
the other hand the ith satellite is in failure, the 
corresponding element in νµ

r
 gets some unknown 

nonzero bias Bsat,i: 
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There are two strategies to deal with the unknown bias 
error Bsat,i, that will both be discussed later.   
 
The receiver uses the model (3.9) to compute both a 
position estimate and an error detection test statistic. The 
following two paragraphs will discuss the computations 
involved, and also show how the related probabilities of a 
position error and of error detection can be determined.  
 
3.4 Position error probability 

Due to the overdetermination, different approaches could 
be followed to compute a position estimate. Fortunately, 
there seems to be agreement that the best way to proceed 
is to use as many measurements as possible in the position 
estimateiii and use a simple least squares position 
estimation scheme. The resulting equation for the 
estimated position becomes: 

zHxLS
rr +=ˆ   (3.11) 

in which H+ is the Moore-Penrose pseudo-inverse of H 
[Golub96], defined as: 

TT HHHH 1)( −+ =   (3.12) 

The position error x
r

∆  that results is normally distributed 
according to: 

( ) ⎟
⎠
⎞⎜

⎝
⎛−=∆

−+ 12,~ˆ HHHxxx T
GPSLS σµν

rrrr
N  (3.13) 

Figure 1 shows how the position error probability is to be 
computed. Because its underlying distribution is normal, 
points of equal probability density lie on ellipsoids 
centred on the mean position error (bias) νµ

r+H . The 
probability of a position error is the content of the area of 
the error ellipsoid that falls outside the circle with a radius 
equal to the horizontal alarm limit. The exact probability 
can be found by integrating the probability density 
function (3.13) over the shaded area. Although 
straightforward, computation of the probability content of 
this area is quite involved [Ober97]. It is therefore often 
approximated by simpler distributions, as will be 
described in section 4.2. 
 
Before discussing the probability that an error is detected, 
it will be useful for future reference to introduce the 
following observation on the relation between satellite 
bias and user position bias. From (3.10),(3.11) and (3.13) 
it is readily seen that for an error in satellite i, the size of 
the position error when the noise is neglected can be 
written in the form 

isatipossat
noiseno

ipos BcxB ,,2, =∆=
r  (3.14) 

where csat2pos,i is some positive constant that depends on 
the elements in H+. 
 
3.5 The probability of a detection 

All RAIM error detection tests published use the least 
squares residualiv that is nothing but an estimate of the 
measurement errors and noise. The residual can be written 
as 

( )zHHILS
rr +−=ν̂   (3.15) 

and is normally distributed as: 

( )( )IHHI GPSLS
2,~ˆ σµν ν

rr +−N   (3.16) 

The position error (3.13) and the least squares residual 
(3.15) are statistically independent (for a proof, see 
[Ober97] ). As a result, so are Ppos_error|sat_failure,i and 
Pno_alarm| sat_failure,i from  (3.8) . 
 
Based on the least squares residual, there have been 
described two different test statisticsv for error detection:  
 
• the (squared) L2 norm of the residual 2

2LSν
r

  

• the maximum residual (L∞ norm) 
∞LSν

r
  

 
Note that the maximum residual is the defined as the 
largest of the absolute values of all elements in the 
residual vector, which is nothing but the vector’s L∞ 
norm. Because the residual’s squared norm has a chi-
squared distribution, its use will be referred to as applying 
the ‘chi-squared algorithm’. This algorithm is used in 
many references such as [DO208,Brown92,Sturza88, 
Leva96].  
 

Figure 1. The position error probability is the probability 
content of the position error distribution outside the 
allowed circle.
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Just as in the case of the position error, for the noiseless 
case the relation between the satellite bias and the norm of 
the least squares residual can be written in the form: 

isatiteststatsatnoisenoor
LSiteststat BcB ,,2

2
,

ˆ ⋅==
∞

ν
r

 (3.17) 

in which csat2teststat,i is the ith diagonal element of the matrix 
I-HH+. 
 
In both algorithms, an alarm is raised as soon as the least 
squares residual lies outside a specified area. This area is 
a circle for the chi-squared algorithm and a box for the 
maximum residual algorithm, see Figure 2. The 
probability of detection can be determined by integrating 
the probability density function of the residual over the 
detection area. The probability content of this area is 
described by standard distributions: either a (central or 
non-central) chi-squared distribution function for the chi-
squared algorithm or a Gaussian (normal) distribution for 
the maximum residual algorithmvi. Therefore, standard 
tables can be used. 

3.5.1 Detection probability and AUGUR 
[Kelly97] shows that the maximum residual algorithm has 
a slightly superior error detection performance for the 
same alarm rate. The extra power is obtained because the 
algorithm exploits the knowledge on both size and 
direction of the least squares residual, while the chi-
squared algorithm uses only the size. In view of the JAA 
requirements, AUGUR remains conservative and 
therefore assumes that the receiver uses a chi-squared 
algorithm for error detection. 
 
3.6 Dealing with the unknown bias 

In the previous discussion, the computation of RAIM 

performance parameters has been described. The 
methodology described is ‘exact’ and does not contain 
any approximations or simplifications yet. One problem 
has not been covered yet: in case of a satellite error both 
the probability of a position error and an alarm depend on 
the unknown bias Bsat,i in the failing satellite. To stress 
this dependence, (3.7) can be written explicitly as a 
function of Bsat,i:  
 

PHMI(Bsat,i)=Ppos_error(Bsat,i)⋅Pno_alarm(Bsat,i) (3.18) 
 
Note that for notational convenience, the fact that these 
probabilities are conditioned on the presence of a satellite 
failure has been dropped. 
 
When the bias in a failing satellite grows, so do the biases 
in the position and test statistic, increasing the 
probabilities of a position error but also of detection. 
Because the parameter Bsat,i is unknown, some value will 
have to be substituted to enable performance computation. 
Two strategies are known: 
 
1. Substitute minimal detectable biases 
2. Substitute worst case biases 
 
These methods will be discussed in the next two 
paragraphs. 

3.6.1 Minimal Detectable Biases 
The minimal detectable bias (MDB) principle (e.g. 
[Sturza90,Leva96]) approaches the ‘unknown bias’ 
problem as follows. The TSO-C129 requirements state, 
that position errors have to be detected with a probability 
of at least 99.9%. For this requirement, the minimal 
detectable bias is defined as the smallest satellite bias that 
can be detected with at least 99.9% probability. Satellite 
biases smaller than the MDB will be detected with a 
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Figure 2. The two different decision rules for error detection. On the left hand side, an error is detected when 
the least squares residual lies outside a circle (chi-squared algorithm), on the right hand side when it lies 
outside a box (maximum residual algorithm). In both figures, the N-dimensional residual space has been 
depicted in two dimensions only. 



lower probability.  
 
Instead of computing the missed detection probability, the 
MDB approach usually continues by computing the 
‘maximum undetectable position bias’ that is detected 
with less than 99.9% probability (by substituting the 
MDB for Bsat,i in (3.18)). RAIM is then declared available 
when this bias is smaller than the maximum allowed 
position error. Note that in this process, except for the 
centre, the position error distribution remains unused! 
This is due to the fact that it is implicitly assumed that all 
undetected satellite failures will cause a position failure 
and Pno_alarm(MDB) is used as an upperbound on the 
probability of HMI: 
 

PHMI(MDB)= Ppos_error(MDB)⋅Pno_alarm(MDB) 
                 < Pno_alarm(MDB)  (3.19) 

 
At first sight, the MDB approach therefore seems to be 
conservative, as not all undetected satellite failures will 
cause position failures. A significant part of the position 
error distribution will lie in the area where the position 
error is within the required bounds. Therefore, the 
probability that a position failure is undetected will 
always be significantly higher than 99.9%.   
 
The previous reasoning is perfectly true, as long as the 
satellite bias indeed equals or exceeds the MDB. 
However, satellite biases smaller than the MDB can still 
cause HMI probabilities exceeding 0.1% due to their 
reduced detectability (higher Pno_alarm). For certain 
combinations of satellite geometry and satellite errors, the 
use of the MDB can be an underestimation of the 
probability of HMI! 
 
The situation is depicted symbolically in Figure 3. The 
solid line in this figure represents the relation between the 

size of the position bias and the size of the test statistic 
bias:  

iteststat
iteststatsat

ipossat
ipos B

c
c

B ,
,2

,2
, ⋅=  (3.20) 

The ‘cloud’ that is drawn as an ellipsoid (although not a 
real ellipsoid in practice) represents the uncertainty that is 
introduced by the presence of noise. It’s centre lies in 
(Bpos,i, Bteststat,i) and shifts towards the upper-right for a 
growing satellite bias. The MDB is the value of the 
satellite bias that causes exactly 99.9% of the noise cloud 
to lie beyond the error detection threshold Tthreshold. 

3.6.2 Worst Case Satellite Biases 
The possibility that the MDB approach could be 
underestimating the missed detection probability for 
certain satellite biases has been realised for some years 
now [Brown94,Lee95,Ober97]. Instead of only 
considering the detectability of a bias, as done in the 
MDB approach, these references all take both the 
detectability and the chances of causing a position error 
into account. Although the way to accomplish their goal 
differs, they all explicitly solve for a worst case bias that 
maximises the missed detection probability, as illustrated 
in Figure 3b. Unfortunately, the computation of the worst 
case bias for a particular geometry is computationally 
involved. The Approximate Radial error Protected (ARP) 
method [Chin92] has used Monte Carlo simulation with 
many different geometries to determine the worst case 
probability of HMI (and therefore implicitly the worst 
case satellite bias). It is unclear whether the values found 
in [Chin92] are representative for every geometry and 
every satellite constellation, or are only valid within the 
context of the optimal 21 satellite constellation used in the 
simulations. 
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Figure 3. The position error and detection probabilities are a function of the unknown satellite bias Bsat. These 
figures show the situations when the unknown bias is replaced by the Minimum Detectable Bias (left hand side) or 
Worst Case Bias (WCB, right hand side). 



3.6.3 Unknown biases and AUGUR 
In the implementation of the AUGUR algorithm, it would 
have been appropriate to take the worst case bias 
approach because the MDB might lead to overly 
optimistic results. Unfortunately, the computational 
complexity of finding the worst case bias iteratively 
prevented the use of this approach, but this is most likely 
also true for current TSO-C129 receivers. Using the ARP 
method is a rather unsatisfactory alternative – although it 
uses worst case biases, it has the disadvantage of using 
Monte Carlo derived parameter settings that are only valid 
‘in the mean’ and for the optimal 21 satellite 
constellation.  
 
When comparing ARP to MDB, it turned out that for the 
given requirements and satellite noise, use of MDB leads 
to an earlier rejection of a geometry than ARP does. This 
means that for the case at hand, MDB is more 
conservative than ARP is. AUGUR therefore uses the 
MDB approach.  
 
4. SIMPLIFICATIONS 

The previous section has discussed the computations of 
the integrity and alarm rate as a function of geometry. The 
problem of exact computation is well posed, but 
computationally involved, especially when the worst case 
bias approach is used. Moreover, there are many different 
parameters involved. It is often convenient to reduce the 
number of parameters involved to arrive at simpler 
decision criteria for RAIM availability and reduce the 
computational effort. This section will describe which 
simplifications are often used and what the consequences 
are in terms of performance.  
 
4.1 Least detectable satellite only 

Often, the assumption is made that a satellite failure, 
when it occurs, occurs on the satellite that has the smallest  
error detection probability for a bias of a certain size. In 
fact, many researchers interpret the following phrase out 
of [DO208] as a demand to consider only this worst  
satellite:  
 

“The integrity system shall meet the specified 
detection probability globally at all times for single 
satellite failures, except for those conditions where 
integrity cannot be assured and the flag is displayed 
accordingly”. 

 
Likewise, the TSO-C129 RAIM tests are performed by 
putting a ramp bias on the least detectable satellite and 
therefore seem to be based on this assumption. In reality, 
every satellite is equally likely to fail, and it should 
therefore be clear that considering this ‘worst case’ 
satellite only leads to an overestimation of PHMI and an 
underestimation of RAIM availability. However, 
assuming that it is only the least detectable satellite that 

fails, the expression for PHMI (3.7) can be simplified to 
read: 

)1( ,_|
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LDSfailuresatectiondet
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where LDS is the index of the least detectable satellite. 
Which of the satellites is least detectable has yet to be 
determined. In has already been shown that in the 
noiseless case there are simple linear relations between 
the satellite bias and resulting position and test statistic 
(3.14) and (3.17). As a result, the test statistic and position 
error are also linearly related by:  

iteststatiipos BSLOPEB ,, ⋅=  (4.2) 

in which the SLOPEi parameter is introduced as:  
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Referring once more to Figure 3, it should be clear that a 
higher value of SLOPEi corresponds to a larger 
probability of HMI, because a larger part of the noise 
cloud will lie in the missed detection area. Therefore, the 
satellite with the highest value of SLOPEi is usually 
considered least detectable.  
 
Note that there is a potential problem in using only the 
SLOPEi value that is obtained from a noise-free 
approximation. It might be that there are cases when the 
influence of noise makes another satellite least detectable. 
The exact position error distribution and therefore the 
shape of the noise cloud in Figure 3 changes differently 
for growing failures on different satellites. This could 
make the worst case bias on a satellite with a lower 
SLOPEi value result in a higher probability of HMI than 
the worst case bias on the satellite with the highest 
SLOPEi

vii. To the best of the author’s knowledge, it is yet 
unknown to what extent the actual RAIM performance 
can vary for equal values of SLOPEMAX, and how reliable 
the use of the SLOPEMAX really is.  

4.1.1 Representing geometry by HDOP 
In the example algorithm of Appendix F of [DO208], the 
geometry is represented by the largest HDOP of a subset 
of 4 out of 5 satellites (called HDOPmax here). This is 
another way of representing a geometry by one ‘worst 
case satellite’ related figure. 
 
It has been shown that this is an extremely poor way to do 
geometry screening [Chin92]. Chin states:  
 

“… we conclude that HDOPmax is not a useful 
criterion”. 

 



Because of the poor correlation of its value with the 
RAIM performance parameters, use of HDOPmax is shown 
to reduce the availability of RAIM largely due to the 
resulting need for high margins and the difficulty of 
determining a suitable threshold for unavailability. 

4.1.2 Least detectable satellites and AUGUR 
The assumption that it is always the least detectable 
satellite that fails is obviously very conservative. Still, it is 
widely used and applied [Brown90, Leva96, Sturza90, 
Lee95, Kelly97], and AUGUR incorporates it as well. All 
references use the SLOPEi rather than the unreliable 
HDOPmax criterion. Although it is certainly possible that 
there are receivers that still use the latter criterion, RAIM 
availability would be unnecessarily degraded when 
AUGUR would do this as well. Furthermore, there are no 
solid criteria to choose a HDOPmax threshold. For this 
reason, AUGUR uses the SLOPEi criterion instead.  
 
4.2  Approximate probability densities 

The exact computation of the probability of a position 
error involves integration of a two-dimensional normal 
probability density function over a circle. The exact 
computation of detection probabilities needs the 
probability function of a non-central chi-squared 
distribution. Both exact computations are computationally 
involved, and throughout RAIM literature different 
approximations have been used.  Three of them will be 
discussed shortly. Details and proves can be found in 
[Ober97]. 

4.2.1 Normal approximations 
The noncentral chi-squared distribution of the L2-norm of 
the least squares residual (or parity vector) can be 
approximated by a normal distribution, that is in fact the 
marginal distribution of the residual along a certain line. 
This approach is for example used in [Lee95], and leads 
to an underestimation of the probability of detection. 
Therefore, this approximation is conservative as it leads to 
earlier rejection of geometries. In a similar way the 
position error can be approximated normally, as has been 
advocated in [Lee95] and [Kelly97]. It has the 
disadvantage of underestimating the probability of a 
position failure in some cases, and can lead to geometries 
being accepted that should be inadmissible.  

4.2.2 Chi-squared approximation of the probability 
of a position failure 

To avoid the underestimation of the position error, the 
distribution of the position error can be bounded by a non-
central chi-squared function [Ober97]. This method 
always overestimates the probability of position error, 
leading to a conservative RAIM availability.  

4.2.3 Approximate densities and AUGUR 
AUGUR does not use the discussed approximations of the 

position error probability, as it employs the MDB 
approach. This makes the exact probability density of the 
position error immaterial, as the MDB approach is based 
on the assumption that the position error probability 
simply equals one as soon as an undetected satellite 
failure is present (3.19). Normal approximations to the 
probability of detection could still be considered, as this 
would lead to results that are more conservative. 
However, it has been considered very unlikely that 
manufacturers would use this approximation. First of all, 
the MDB method allows computation of the threshold-
setting offline, making the gain in computational speed of 
the approximation immaterial. Moreover, all literature 
references that discuss the MDB method use exact chi-
squared distributions for the test statistic as well. 
Therefore, so does AUGUR. 
 
5. HOW ALGORITHMS DIFFER 

Using the material in the previous sections, the question 
concerning the possible different ways to implement 
RAIM error detection and RAIM availability calculations 
can be addressed. In the following overview, first all 
previously covered items will be summarised. Then, some 
other, more obvious but still important potential 
differences are discussed, such as parameter settings, 
operational conditions and receiver limitations. 
 
5.1 Algorithmic differences 

RAIM detection and geometry screening algorithms can 
differ in a couple of ways that have been discussed in 
detail before. Either the “chi-squared” or the “maximum 
residual” algorithm can be used. Furthermore, two 
different methods for substitution of the unknown bias in 
case of a satellite failure can be exploited, based on either 
a minimal detectable or a worst case bias principle. 
Especially when the worst case bias is used, many 
different ways exist to simplify the complicated 
probability distributions of position and test statistic.  
 
All known algorithms represent the geometry by the least 
detectable satellite only, even though this results in 
conservative availability figures. Although the foundation 
for determining the least detectable satellite is not entirely 
sound, the SLOPEi criterion seems to be the only reliable 
criterion that is currently available. 
  
5.2 Parameters settings 

Naturally, algorithms can differ in the values chosen for 
the parameters that have been assumed fixed in the 
discussion so far: 
 
• GPS/barometer range accuracy 
• failure rate of GPS satellite/barometer 

 
Obviously, higher values of these parameters would lead 



to a decrease in RAIM availability. The way of calibrating 
the barometer (by GPS or local pressure) and the use of 
filtering of the GPS pseudoranges to reduce noise 
influence the performance of the algorithm as well. 
 
5.3 Geometric differences 

Although the GPS constellation is the same for all 
receivers that are operated at the same time at the same 
geographic position, they might still experience different 
measurement geometries because they track different 
satellites. Important factors to be considered are: 
 
• mask angle 
• number of satellites tracked (or used) for RAIM and 

positioning 
• criteria used for subset selection: [DO208] proposes to 

select 5 satellites based on best accuracy 
considerations, while other sources [Graas93] propose 
a best integrity criterion instead 

• the use of barometric aiding 
 
Note that the number of satellites that are tracked during 
operation might also change for different flight levels and 
bank angles. 
 
6. THE AUGUR ALGORITHM SUMMARISED 

In summary, the JAA requirement for the AUGUR RAIM 
prediction software to be either exact or conservative has 
been translated in the use of: 
 
• a chi-squared distributed error detection test statistic 
• representation of the satellite geometry by the least 

detectable satellite only 
• use of the minimal detectable bias principle to cope 

with the unknown behaviour of erroneous satellites 
 
As has been shown, all choices in the algorithm design are 
conservative without degrading the RAIM availability to 
an unreasonable extent.  
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i  In the translation from ‘event per hour’ to ‘event per 

sample’, it is usually assumed that an independent sample 
can be taken once every 2 minutes due to the correlation 
time of selective availability, see [DO208]. 



                                                                                               
ii  Value based on the failure rates of [SPS]. [DO208] uses a 

lower failure rate of about 2.1⋅N⋅10-7 / sample 
iii  In principle, one could decide to use as few as 4 

measurements in the position determination only. This 
would lead to a decreased accuracy, but has the advantage 
that errors in the satellites that are not used do not influence 
the position 

iv  The least squares residual is an N-vector that is restricted to 
lie in an N-4 dimensional space. Therefore, often a so-called 
‘parity vector’ is used (obtained by a simple co-ordinate 
transformation), that is an (N-4)-vector with the same 
information content as the least squares residual but with 
independent elements. Whether the least squares residual or 
the parity vector is used is only a matter of convenience, as 
their statistic properties are identical, see also [Brown92]. 

v  Most other techniques only differ from the two above ‘on 
the surface’, while being functionally equivalent. [Kelly97] 
shows that the well-known algorithm by Brenner 
[Brenner90] equals the maximum residual algorithm, while 
the ‘single deletion’ algorithm of [Parkinson88] matches the 
chi-squared algorithm. 

vi The Gaussian distribution is not exact but rather gives an 
underbound on the detection probability, see for example 
[Barnett94] for details. 

vii  It might be possible to prove or disprove this statement. 
Author is not aware of the any such prove. As safety is 
involved, doubt should remain until a solid proof is found. 




