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ABSTRACT 
 
In this paper, we will develop a new integrity metric for 
navigation systems, that we will call the Bias Integrity 
Threat (BIT), and a derivative of it, the Maximum 
Undetectable Position Bias (MUPB). Integrity metrics are 
used to indicate whether a navigation system has 
sufficient error detection power. As we will see, integrity 
depends on both measurement geometry and 
measurement quality, that is, the standard deviation of the 

measurement noise. Existing metrics like the δHmax  
[Sturza90] and the ARP [Brown92b] have two serious 
limitations: they can not be applied straightforwardly for 
measurements of different standard deviations, or for 
multiple failures. Also, they can not be used in a Kalman 
filter environment. Because these metrics do not take the 
noise level into account, the values of δHmax  and the 
ARP are relative, rather than absolute measures of 
integrity, which makes it hard to interpret their values. 
We will illustrate this in section 7. 
 
The BIT and MUPB do not possess any of these 
disadvantages: they can be used with general 
measurement covariance matrices, and are well defined 
for the assumption of multiple failures. They are therefore 
applicable in a wide range of applications, including 
Kalman filter environments. Furthermore, their values are 
absolute and thus more suitable for comparing the 
integrity of different navigation systems than the 
traditional integrity measures. Their computational needs 
are modest, allowing their use in real time applications.  

Figure 1. An Integrity Monitor with its input and output signals 



1. Introduction 
 
Integrity is the ability of a navigation system to provide 
timely warnings when the user should not use the system 
for navigation. This means that the user needs to be 
warned when the system can not guarantee that it is 
working within the required specifications. In this paper, 
we will focus on integrity monitoring methods that do not 
use external systems. Two techniques can be 
distinguished. Receiver Autonomous Integrity Monitoring 
(RAIM) only uses the signals that are provided by GPS 
receivers, Aircraft Autonomous Integrity Monitoring 
(AAIM) uses information from other sensors as well. 
Under the assumption that all sensors are fully integrated 
and used in the position solution, there is no fundamental 
difference between RAIM and AAIM, and we will not 
differentiate between the two. 
 
An integrity monitoring system must consist of two parts 
(see also figure 1): 
  
1. An Error Detector 

The error detector will warn the user in case the 
system contains errors and should not be used. It uses 
redundancy in the signals to compute a test statistic 
(usually the residual of the position computation) that 
becomes larger when the mutual consistency of the 
signals becomes lower. If the test statistic surpasses a 
certain threshold, an error is detected and the user is 
shown a red light.  
 

2. An Error Detectability Monitor 
The second part of the system is the ‘error 
detectability monitor’, that computes whether enough 
redundancy is present to be able to detect errors with 
sufficient reliability. If this is not the case, the system 
lacks detection power, and the user is shown a yellow 
light. This part is the actual integrity monitor, but 
because the error detectability it computes is only 
meaningful in combination with a certain error 
detector, the latter is usually assumed to be an integral 
part of the monitor as well. As we will see, the error 
detectability is a function of both the measurement 
geometry and standard deviation. 

 
After the introduction of the system model in section 2, 
we will first describe a common error detection scheme in 
section 3. Then, we will discuss two currently existing 
error detectability (integrity) metrics called δHmax  and 
ARP in section 4 and 5. We show the disadvantages of 
these metrics in section 6. In section 7 we introduce a new 
metric called Bias Integrity Threat (BIT), that is also well 
defined for multiple measurement biases (section 8). A 
derived integrity metric, the Maximum Undetectable 
Position Bias (MUPB), is presented in section 9. Section 
10 shows how the BIT and MUPB can be applied in a 

Kalman filter environment. The appendix will illustrate 
how to compute the BIT in a multiple bias scenario. 
 
 
2. The system model 
 
We will assume that the relation between the 
measurements that the navigation system provides, and 
the actual position of the user, is given by an 
overdetermined linear regression model: 
 

r r r
z H x= ⋅ +ν  (2.1) 

 
in which: 

 rz  : n-vector of measurements 
H : n × m observation matrix  rx  : m-vector of unknowns (position, clock bias) rv  : n-vector with independent noise and biases in the 

measurements, normally distributed ~N( rµν ν, R ) 
with n>m. 
 
In case of no error, the noise is assumed to be unbiased 
(that is, zero mean), but when errors are present, the mean 
will deviate from zero. We want to detect such deviations, 
and can formulate the error detection problem as the 
following hypotheses testing problem on the mean of the 
noise (that we will call bias from now on): 
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To test between these hypotheses, we have to estimate the 
bias rµν . We will discuss this in the next section.  
 
  
3. Position and bias estimation 
 
It is well known [Rao95] that when the noise is normally 
distributed, the best (minimum covariance) linear 
estimation of the position is given by a weighted least 
squares solution of (2.1): 
 

r r$x NzLS =  (3.1) 
 
with 
 

N H R H H RT T= − − −( )ν ν
1 1 1   (3.2) 

 
This estimation is normally distributed: 
 

( )r r$ ~ ,$ $x N RLS x xµ  (3.3) 



with mean and covariance 
 

r r rµ $
$

x LSx x= + ∆   (3.4) 

R H R Hx
T

$ ( )= − −
ν

1 1    (3.5) 
 
where we have written the position error that is caused by 
the bias as 
 
 ∆

r r$x NLS = µν   (3.6) 
 
The linear model (2.1) can be seen as a decomposition of 
the observation vector 

rz  into a nonstochastic part Hxr  
and a stochastic part 

r
ν . When we remove the estimated 

nonstochastic part, we obtain the best estimation of the 
noise as the least squares residual: 
 

r r$ν LS Dz=   (3.7) 
 
with 
 

D I H H R H H R I HNT T= − = −− − −( ( ) ) ( )ν ν
1 1 1  (3.8) 

 
The estimated noise is normally distributed 
 

( )r r$ ~ ,$ $ν µν νLS N R   (3.9) 

 
with mean and covariance 
 

r r
µ µν ν$ = D   (3.10) 

R DR DT
$ν ν=   (3.11) 

 
Note that both the position and the noise estimation are 
only unbiased when r r

µν = 0 . Another important 
observation is that the matrix D has rank n-m. This means 
that rµν$  can become zero when more than n-m elements 
of r

µν  are nonzero, that is, when more than n-m 
measurements are in error simultaneously. In that 
situation, the worst case error detectability drops to zero. 
 
The estimation of the noise can be used to test between 
the two hypotheses of (2.2). Usually, the test is not done 
on the separate components of 

r$ν LS , but on its total length, 
normalized by the noise covariance. The test statistic1 
becomes 
 
                                                           
1 In RAIM literature, sometimes the RRP (Range Residual Parameter), 
[Parkinson88] [Brown96], is used. The RRP is monotonically related to 
the SSE and therefore has similar properties:  
 

RRP SSE
n m

=
−

 

SSE RLS R LS
T

LS= =
−

−r r r$ $ $ν ν ν
ν

ν1

2 1   (3.12) 

 
where SSE stands for “sum of squares of (range residual) 
errors”. The test statistic SSE has a noncentral chi-square 
distribution with n-m degrees of freedom and a 
noncentrality λ: 
 
 SSE n m~ ( , )χ λ2 −   (3.13) 
 
with  
 

λ µ µ µ µν ν ν ν ν ν= =− −r r r rT T TD R D R1 1
$ $    (3.14) 

 
This means that the test between the ‘no error’ and ‘error’ 
hypotheses is equivalent to a test on the noncentrality 
parameter of the distribution of the SSE: 
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The test statistic has an expected value that grows linearly 
with the noncentrality parameter 
 
 { }E SSE n m= + −λ   (3.16) 
 
and is therefore suitable to perform test (3.15). The final 
decision will be taken by putting a threshold on the SSE. 
If the threshold is exceeded, the ‘no error’ hypothesis is 
supposed to be too unlikely, and an error is detected: 
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Figure 2. Probability distribution function of central 
and noncentral chi-square distributions with 3 degrees 
of freedom 



Figure 2 shows some noncentral chi-square distributions 
for 3 degrees of freedom and different values of λ. 
Indeed, we see that large values of the test statistic are 
very unlikely for the ‘errorfree’ distribution (λ=0), and 
are therefore much likelier to be caused by biases (λ>0) 
than by noise. 
 
The noncentrality λ depends on the unknown size and 
direction of the bias, as well as on the known 
measurement geometry that is reflected in H. The more 
favorable the geometry, the larger λ will become for a 
certain bias, and the easier it will be to detect this bias. 
 
 
4. Error detectability: δHmax  (integrity DOP) 
 
In this section, we will discuss the integrity parameter 
known as δHmax  or integrity DOP (iDOP), that is a 
measure for the error detectability that a certain 
measurement configuration offers. 
 
Suppose one measurement i contains a bias. If the 
remaining measurements show a weak geometry, they 
provide only inaccurate position information, making it 
hard to check the correctness of measurement i. 
Moreover, if measurement i is responsible for a good 
overall geometry, its bias will cause a position error that 
is relatively large compared to the obtained precision. An 
intuitive and often used measure of integrity can therefore 
be defined as the worst reduction in position precision, 
measured in DOP, caused by removing one measurement 
from the solution. This ‘integrity geometry’ or ‘integrity 
DOP’ is a worst case parameter that is defined as 
 
 iDOP DOP DOP

i i= −max 2 2   (4.1) 

 
in which DOP is the ‘all in view’ dilution of precision: 
 
 DOP trace H HT= −( ) 1   (4.2)  
 
and DOPi is the DOP of the solution in which 
measurement i has been omitted. The integrity DOP was 
introduced in [Brown90] and [Sturza90], where it was 
called δHmax . We will continue to use the more 
descriptive term integrity DOP (iDOP), because it plays 
the same role in failure detection as the DOP does in the 
navigation problem. Because of the way it is defined, the 
integrity DOP is only meaningful: 
 
• for independent measurements with identical noise 

variances 
• for the linear regression model 
• for the assumption of a single failure 

In the next section we will discuss an equivalent 
description of the integrity DOP, that will help us to find 
a more generally applicable metric in section 7. 
 
 
5. Error detectability: the ARP 
 
As we showed in section 3, a measurement bias will cause 
both a position estimation error and a larger test statistic. 
Its exact influence will depend on the measurement 
geometry. System integrity is guaranteed as long as the 
test statistic represents the position bias well. The 
minimum size of a bias that can be detected reliably is 
determined by the measurement noise, and it is important 
that the position error that this bias can cause remains 
within the specified requirements. It can be proven 
[Ober96], that the iDOP exactly equals the largest ratio of 
the position estimation bias (3.6) and the mean of the 
estimated noise (3.10) that a bias in a single measurement 
can cause. Note that this is only true in the case that all 
measurements are independent and have the same 
variance (Rν=σ2I).  

  
This means that the following definition of the iDOP is 
equivalent to (4.1): 
 

iDOP
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Because we assume that only a single failure occurs (in 
the measurement indexed by i), the bias vectors in (5.1) 
have the form 
 

r
L Lµ µν

( ) [ ]i
i

i

T= 0 0 0 0   (5.2) 

 
When a certain threshold SSEthreshold for the test statistic is 
chosen, Brown [Brown92b] defines the following 
integrity metric: 
 
 ARP iDOP SSEthreshold= ⋅   (5.3) 
 
where ARP stands for Approximate Radial-error 
Protected. The ARP is an integrity metric that estimates 
the maximum position error that can remain undetected. It 
is based on the fact that, when there is no noise, the iDOP 
is exactly the ratio of position bias and test statistic for the 
worst measurement bias: 
 

no noise iDOP
x

SSE
LS

⇒ =
∆
r$

2

  (5.4) 

 
Naturally, the largest position bias that remains 
undetected is obtained when we substitute 



SSE=SSEthreshold.. Of course, measurement noise makes 
(5.4) too optimistic, and the actual position error that can 
be protected will be notably larger than the ARP of (5.3).  
 
Although the two definitions of the iDOP (4.1) and (5.1) 
are mathematically identical, they offer two different 
intuitive explanations of the meaning of the value. As we 
will see (5.1) will prove to be more appropriate in the 
search for a generally usable integrity metric. 
 
 
6. Disadvantages of geometric integrity metrics 
 
As we have seen in the previous sections, the integrity 
metrics δHmax  (iDOP) and the ARP are purely geometric 
measures of integrity. We will show that this results in 
two disadvantages: 
 
• They can not be used straightforwardly with 

measurements with different standard deviations 
• Their values are not related to the actual noise level, 

but rather to a certain ‘standard noise level’. 
Therefore, they are not suitable to compare the 
integrity of different navigation systems and situations 

 
Although this section will concentrate on the drawbacks 
of the iDOP, it should be clear that the ARP shares the 
same disadvantages, because it contains the iDOP in its 
definition2. 
The iDOP assumes that the variance of all measurements 
is the same (Rν=σ2I). If this is not the case, it can still be 
used after measurement scaling as was indicated in 
[Brown96]. Brown discusses the possibility of scaling 
individual measurements in such a way, that the scaled 
measurement residuals all have the same standard 
deviation again. His example covers the addition of 
GLONASS pseudorange measurements to the GPS 
pseudoranges: 
 
If we denote the pseudoranges by PRGPS and PRGLONASS, 
and assume that 

 
σ σPRGLONASS PRGPS

= 1
2

  (6.1) 

 
the standard deviation of twice the GLONASS 
pseudorange equals the standard deviation of GPS: 

 
σ σ σ2 2⋅ = ⋅ =PRGLONASS PRGLONASS PRGPS

  (6.2) 

This means that when we multiply all rows of H that 
belong to GLONASS measurements by a factor 2, we can 
use the traditional integrity metrics again. 
 

                                                           
2 An extra problem with the ARP is, that it is based on the approximate 
relation (5.5) between position bias and test statistic, that will become 
less valid when more noise is present. 

Unfortunately, the standard deviation to which the 
measurements are scaled will influence the values of 
iDOP, even though the integrity is not effected by such a 
scaling. The opposite can also happen: when we compare 
two situations with the same measurement geometry but 
different amounts of noise, the values of iDOP are the 
same, while the integrity will improve with a decrease of 
the noise. 
 
We can illustrate this as follows. In the example provided 
above, we could also scale all GPS measurements to get 
GLONASS variances by multiplying all rows of H that 
belong to GPS measurements by 0.5. Table 1 shows what 
this means for the values of the iDOP (and of the BIT that 
we will introduce in the next section). The values of 
iDOP and BIT can not be compared easily, but the table is 
still useful in comparing the behavior of both integrity 
metrics in different navigation situations. We compute 
them for four different cases. The measurement geometry 
can be found in the appendix (see figure 5), and we used 
it with the following measurement sources: 
 
1. Satellites 1 and 2 are GPS, satellites 3 and 4 are 

GLONASS. We scaled the GLONASS variances to 
GPS variances 

2. idem, but this time we scaled the GPS variances to 
GLONASS 

3. All satellites are GPS satellites 
4. All satellites are GLONASS satellites 
 
The GPS and GLONASS standard deviations are 
assumed to equal σ PRGPS

= 30m and σ PRGLONASS
= 15m. 

 
Despite the simplicity of the example, we can draw two 
important conclusions: 
 
• The same measurement configuration with the same 

integrity leads to different iDOP values and identical 
BIT values due to the different scalings 

• An improvement of the measurements by a factor 2 
leaves the iDOP unchanged, but improves the BIT by 
a factor 4 

 
We will see in the next section, that the improvement of a 
factor 4 is really related to an improvement in integrity of 
a factor 4 (this will simply follow from the definition of 
the BIT). In other words: the BIT that we will define in 
the next section does not have the disadvantages from the 
iDOP, and its value is an absolute measure of integrity.  

 iDOP BIT 
GLONASS scaled to GPS 52.8 1080 
GPS scaled to GLONASS 3.3 1080 

GPS only 2.5 2240 
GLONASS only 2.5 560 

Table 1. Comparison between iDOP and BIT 



 
 
7. The Bias Integrity Threat 
 
Because integrity not only depends on measurement 
geometry, but also on the amount of measurement noise, 
we will introduce a new integrity metric (BIT), that takes 
both influences into account. In section 8, we will further 
generalize its definition to the multiple failure scenario. 
 
Lets assume that the variance of all measurements is the 
same (Rν=σ2I). When the unknowns that have to be 
determined are the position [x y z] and the clock bias b, 
they have a covariance (3.5) 
 

R H Hx
T

$ ( )= −σ 2 1   (7.1) 
 
The sum of the variances of the unknown parameters can 
therefore be written in terms of measurement quality (σ) 
and geometry (DOP, see (4.2)) as: 
 

σ σ σ σ σx y z b xtrace R DOP2 2 2 2 2 2+ + + = = ⋅( )$  (7.2) 

 
As follows straightforwardly from (4.1), the worst drop in 
precision caused by removing a satellite can be factored 
in exactly the same way in a signal quality (σ) and a 
geometric (iDOP) part: 
 
 max.drop in trace R iDOPx( )$ = ⋅σ 2   (7.3) 
 
We can conclude that an increase of the noise variance 
will worsen both position accuracy and system integrity, 
although the values of DOP and iDOP remain the same. 
As (7.3) already suggests, the integrity is much better 
described by the product of the iDOP and the 
measurement variance. This means that we can define a 
new integrity metric, the Bias Integrity Threat3, as: 
 

BIT iDOP= ⋅σ 2    (7.4) 
 
As we can see from (5.1) the following equivalence holds 
when Rν=σ2I: 
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3 In [Ober96], we use the term 'GiDOP' (Generalized integrity DOP) 
instead of BIT. Because it represents more than just integrity geometry, 
we decided that BIT is more appropriate. 

in which we recognize the noncentrality parameter of the 
test statistic (3.14) in the denominator. The ratio of (7.5) 
indicates to what extent biases can cause unacceptable 
position errors without being detectable, which justifies 
why we have called it the Bias Integrity Threat. Note that 
the norm of the influence of a bias on the test statistic is 
weighted by the inverse noise covariance: it is exactly this 
weight matrix that incorporates the decreased bias 
detectability for increased noise levels in the BIT. 
 
We can easily generalize the definition of the BIT from 
(7.4) to measurements with different standard deviations. 
We simply drop the constraint Rν=σ2I and compute the 
position bias and the noncentrality parameter in (7.5) by 
using weighted least squares, giving: 
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   (7.6) 

 
Due to the different weights that are attached to the 
measurements, it will no longer be possible to determine 
the contributions of geometry and measurement quality in 
(7.6) separately. 
 
 
8. Integrity and the more failure assumption 
 
The handling of the situation in which multiple 
measurements are assumed to be possibly failing is 
slightly more difficult than the single failure case. A very 
important observation is, that failing measurements can 
still be used to check their mutual correctness! This 
makes it too conservative to look at the drop in accuracy 
that would be caused by removing multiple satellites from 
the position solution, as is proven in [Ober96].  
 
When r failures occur simultaneously, the bias vectors 
that we try to detect will have r nonzero elements. As 
soon as r>1, the exact direction of the bias vector 
becomes important. We will use a worst case approach 
again, and look at the worst direction of all bias vectors 
with r nonzero elements. 
 
To find this worst case direction, we will exploit a 
standard result from linear algebra. For two positive 
definite r×r matrices XTX and YTY, the maximum of the 
so-called Rayleigh’s quotient over all r-vectors rµ r equals 
the largest eigenvalue of (YTY)-1XTX [Strang86] : 
 

( )( )max maxr

r r

r r
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µ µ
µ µ

λ
r

r
T T
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r
T T

r

T TX X
Y Y

Y Y X X=
−1   (8.1) 

 



We have to realize that the matrices in the denominator of 
(7.6) are only positive semi-definite. This implies that if 
we allow too many measurements to become biased, the 
maximum BIT will become infinite as some biases will 
become completely invisible. When we allow at most n-m 
measurements to be unbiased, we can use the previous 
result when we select appropriate full rank, positive 
definite submatrices. We can do this by removing the 
parts that correspond to zeros in the assumed bias vector. 
The BIT can then be written as: 
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in which the r×r ‘quotient matrix’ is 
  

( )Q D R D N Ni i T i i T i( ) ( ) ( ) ( ) ( )~ ~ ~ ~= −
−

ν
1

1
   (8.3) 

 
In this equation, ~ ( )N i  and ~( )D i are the matrices that are 
obtained when we remove all columns that correspond to 
zero elements in 

r
µν

( )i from N and D respectively. 
 
The reader is referred to the appendix for a computational 
example that might clarify the equations in this section. It 
also shows how we can interpret the BIT in geometrical 
terms when all measurements have the same variance. 
 
A last remark on the computation of (8.2): when the 
number of unknowns of interest m is smaller than the 
number of assumed biases r, it is computationally more 
attractive to use the following m×m quotient 
representation ′Q (i)  instead of Q(i)  that is r×r: 
 

( )′ = −
−

Q (i) ~ ~ ~ ~( ) ( ) ( ) ( )N D R D Ni i T i i T
ν

1
1

   (8.4) 

 
This matrix has the same maximum eigenvalue as Q(i) , 
but the corresponding eigenvector is no longer the bias 
vector for which (8.2) reaches its maximum. 
 
 

9. The Maximum Undetectable Position Bias 
 
The appendix shows an example in which the ratios from 
(7.6) and (8.2) are computed for different biases. Figure 4 
shows how the BIT can be interpreted as the slope of the 
square position error plotted against the noncentrality 
parameter of the distribution of the test statistic. We can 
therefore find the Maximum Undetectable Position Bias 
(MUPB) as 
 
 MUPB BIT= ⋅λmin    (9.1) 
 
in which λmin is the smallest value of the noncentrality 
parameter that can be detected with sufficient probability.  
 
The MUPB could be used as an alternative integrity 
metric instead of the BIT. It uses a similar approach as the 
ARP does: they both relate the test statistic to a maximum 
position bias. But instead of using the approximate 
relation between the position bias and the noisy test 
statistic itself (5.4), the MUPB exploits its exact relation 
with the noncentrality parameter of the test statistic's 
distribution. The logic of this should be clear: as we have 
seen from (3.16), it is precisely the noncentrality 
parameter that determines the amount of detection power! 
 
 
10. Integrity and Kalman filtering 
 
In this section we will indicate how it is possible to use 
the BIT and MUPB in a Kalman filter environment. The 
integrity of Kalman filters is often questioned 
[Michalson95]. We will show that this might not be 
necessary, because the worst case effects of biases in the 
Kalman filter can be determined by the integrity metrics 
that we have developed. The approach is simple: we write 
the Kalman filter measurement update in the form of a 
regression model, to which the BIT and MUPB can be 
applied. Due to the recursive character of Kalman filter 
based position computation, special care should be taken 
in the assumption on the biases that can be present. 
 
The Kalman filter computes a predicted position r$x −  and a 
corresponding covariance matrix R

x$−
, based on the last 

position and a dynamic model Φ that relates the past 
position to the current one: 
 

r r rx x wk k k+
−

+= +1 1Φ   (10.1) 
 
in which rw  is white, Gaussian noise, and the index k 
indicates time. The total noise on this prediction is the 
sum of the noise in the dynamic model rw , and the noise 
on the previous position estimation. We will use the 
notation r ′w  for this prediction noise: 
 



′ = − ++ +w x x wk k k k k1 1Φ ( $ )r r r   (10.2) 
 
and denote its covariance by Rw′ . The prediction is used 
in the same way as all other measurements. The 
measurement update of the Kalman filter determines a 
new position estimate by computing a weighted least 
squares solution of the following equation [Kovacevic92]: 
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This is a linear regression model in which the noise and 
its covariance are defined as: 
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  (10.5) 
 
Now that we have written the Kalman filter in the form of 
a regression model, we can use the earlier obtained results 
to determine a metric for the 'worst case' integrity. The 
only thing that is important to realize is that, once a bias 
occurred, it will effect the position estimation, and 
therefore the prediction of the next position as well. In 
other words, measurement biases are propagated in time 
by the dynamic model, which can be dangerous if not 
taken into account. It is possible to compute exactly how 
undetected measurement biases get propagated, see for 
some approaches [Salzmann93] and [Willsky76]. 
However, these methods generally neglect the possibility 
that biases in the measurements and the dynamic model 
occur simultaneously. 
 
A conservative, worst case approach that could be taken 
is to assume that the entire position prediction might be 
biased. This means that we assume that biases of the 
following form might occur in the model (10.3): 
 

r
L L Lµ µ µ µε

( ) [ ]i
m

m
i

i m

T=
+

1
1

0 0 0 0    (10.6) 

 
in which the first m biases correspond to the position 
prediction. It can be proven [Ober96] that this approach 
always gives higher BIT values for the Kalman filter than 
for the regression model. This is not surprising, because 
we assume that all extra added measurements might be in 
error, and we use a worst case approach.  
 
However, the guaranteed position precision that a 
Kalman filter offers might still be better than that of the 
regression model! This can be seen as follows (see also 
figure 3). The position precision that RAIM/AAIM can 

warrant is the sum of the Maximum Undetectable Position 
Bias (caused by a nonzero mean of the noise) and the 
position uncertainty (caused by the covariance of the 
noise). The increased precision that the Kalman filter 
provides might very well compensate for the larger 
position bias that can be protected against!  
 
Preliminary computations at Delft University indicate that 
the Maximum Undetectable Position Bias of the Kalman 
filter is only slightly smaller than the one of the 
regression model, when the assumed noise covariance of 
the dynamic model is not taken too small. More research 
will be necessary to give a definite answer to the question 
whether the Kalman filter outperforms the regression 
model in terms of guaranteed position precision or not. 
 
 
11. Concluding remarks 
 
We have introduced two new metrics for RAIM/AAIM 
integrity monitoring, that can be used in multiple failure 
scenarios and with general measurement covariance 
matrices (of which the Kalman filter is a special case). 
The BIT and the MUPB go beyond geometric 
considerations alone, and takes signal quality into account 
as well. Their values are absolute integrity metrics rather 
than relative ones such as the δHmax  (iDOP) or the ARP, 
and are therefore easy to interpret. Even in the case of 
multiple failures, their computation only requires the 
determination of the largest eigenvalue of a small matrix, 
which makes them well suitable for use in real time 
applications. The BIT and the MUPB provide insight in 
the minimum integrity performance of Kalman filters, and 
can become a useful tool in answering the question 
whether it is safe and/or profitable to use a Kalman filter 
instead of a regression model. 
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Appendix: An example 
 
To show how to compute the BIT for multiple failures, 
we will provide a simple example. We navigate in a two 
dimensional plane, and assume no clock bias is present. 
There are four satellites at angles 35°, 100°, 190° and 
235°. For simplicity, all measurements have the same 
standard deviation 1, which will allow us the give a 
simple geometrical interpretation for the worst case bias. 
Figure 5 shows the satellite positions, the measurement 
biases and the position error for this worst case. 
 
The observation matrix from (2.1) is given by: 
 

 H =

− ° − °
− ° − °
− ° − °
− ° − °

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

cos(35 )  sin(35 )  
cos(100 ) sin(100 )
cos(190 ) sin(190 )
cos(235 ) sin(235 )

 (A-1) 

 
which gives the following matrices that relate the 
measurement bias to the position error (3.6) and mean 
noise estimation (3.7) respectively: 
 

N =
⎡

⎣
⎢

⎤

⎦
⎥

-0.3527  0.4083  0.5795 0.1211
-0.1211 -0.6842 -0.1855 0.3527

  (A-2) 

 

D =

−
− −

− −
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  0.6416 0.0580   0.3684   0.3015
0.0580   0.2552 0.2833   0.3263

  0.3684 0.2833   0.4615 0.1805
  0.3015   0.3263 0.1805   0.6416

 (A-3) 

 
We assume that at most 2 measurements can be biased 
simultaneously. Table 2 shows the worst case "BIT-
ratios" 
 

r r

r r
µ µ
µ µ
ν ν

ν ν

( ) ( )

( ) ( )

i T T i

i T T i

N N
D D

 (A-4) 

 
for all combinations of 1 or 2 erroneous satellites. The 
overall worst case is the one in which satellite 2 and 3 are 
biased. We will show the computation of (A-4) for this 
pair of satellites. Figure 4 shows how the values of the 
BIT-ratio can be interpreted as the slope in the plot of the 
square position error against the noncentrality of the 
distribution of the test statistic. The Maximum 
Undetectable Position Bias (MUPB) follows 
straightforwardly from (9.1). 
 

The bias has the form 

 
r
µ µ µν

( , ) [ ]2 3
2 30 0= T    (A-5) 

 
in which the individual sizes of the bias on satellite 2 
(µ2 ) and 3 (µ3 ) are still unknown. We will compute 
worst case values for them now. 
 
When we select the correct columns from N and D we 
become the submatrices from (8.3): 
 

~ ( , )N 2 3 =
⎡

⎣
⎢

⎤

⎦
⎥

  0.4083   0.5795
-0.6842 -0.1855

 (A-6) 



~( , )D 2 3 =

−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0.0580   0.3684
  0.2552 0.2833

0.2833   0.4615
  0.3263 0.1805

  (A-7) 

 
and the quotient matrix (8.3) becomes 
 

Q( , )2 3 =
⎡

⎣
⎢

⎤

⎦
⎥

  10.5514 7.2653
7.2653   5.2626

    (A-8) 

 
This matrix has the following eigenvalues and 
corresponding eigenvectors: 
 
 λ1= 0.1745, rv T

1 05736 08192= −[ . . ]    (A-9) 
 λ2=15.6386, rv T

2 08192 05736= [ . . ]    (A-10) 
 
The maximum eigenvalue equals 15.6386, which 
indicates that when the smallest bias we can detect with 
enough probability has a size of 1 meter, the 
corresponding (maximum) position error equals 

15.6386 meter. This maximum position error is 
reached when the biasvector lies in the direction given by 
the largest eigenvector rv2  extended with zeros in the 
nonbiased directions: 
 

r r
µ µν ν

( , ) ( , ) [ . . ]2 3 2 3 0 08192 0 5736 0= ⋅ T   (A-11) 

 
This is exactly the bias that causes a position error 
perpendicular to the line that connects the two errorfree 
satellites (3.6): 
 

∆ ∆
r r$ $ [ . . ]x xLS LS

T= ⋅ −0 7071 0 7071   (A-12) 

 

Because the two erroneous satellites are placed at a 
mutual angle of 90°, they can not be used to checked each 
other. This means that the other two satellites have to 
provide the entire redundancy, that is weakest in the 
direction that is perpendicular to the line between them. 

Figure 4. The BIT for different biases 

biased satellite(s)  BIT-ratio  
sat 1   0.2167 
sat 2  2.4875 
sat 3  0.8024 
sat 4   0.2167 
sat 1 + sat 2  2.5064 
sat 1 + sat 3   2.6738 
sat 1 + sat 4  0.6598 
sat 2 + sat 3 15.6386  
sat 2 + sat 4  10.8231 
sat 3 + sat 4  0.9449 

Table 2. BIT-ratios for different biases 

Figure 5. The worst case influence of multiple failures 
and its relation to satellite geometry 




