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ABSTRACT

In this paper, we discuss a number of high-resolution direction finding methods for deter-
mining the two-dimensional directions of arrival of a number of plane waves, impinging on
asensor array. Thearray consists of triplets of sensorsthat areidentical, asan extension of the
1D ESPRIT scenario to two dimensions. New algorithms are devised that yield the correct
parameter pairs while avoiding an extensive search over the two separate one-dimensional
parameter sets.

EDICS: 5.2.2,,5.2.4.

1. INTRODUCTION

Subspace based high resolution DOA algorithms considered in this paper (typicaly “ESPRIT”-like [1],
see[2, 3, 4] for an overview), are usually designed to determine the directions of arrival of narrowband
non-coherent signalsin only one parameter dimension, i.e. array and waves are confined to asingle plane.
Theextension to the 2D case, where both azimuth and elevation angles haveto bedetermined, isin general
non-trivial. The decomposition of the problem into two independent 1D problems results in two decou-
pled parameter sets, which have to be combined to correct parameter pairs. Subspace-based approachesto
solvethe 1D DOA problem typically end up with amatrix pencil, formed on the data after noise reduction
by SVD-based algorithms. The generaized eigenvalues of the pencil contain (implicitly) the directions
of arrival of the impinging signals. In the 1D based 2D case, two pencils are constructed on three data
matrices, and, after having solved these pencils independently, the problem of eigenvalue matching oc-
curs: an agorithm must be found to combine azimuths and elevations correctly. This parameter matching
isessentialy what makesthe 2D problem more difficult to solve. Different approaches have been alluded
to in the literature:

1. Correlation technique. This method is described in Zoltowski et al. [5]. After calculating the cor-
relation matrix between the outputs of al sensors, compute the eigenvectors that correspond to the
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noise. The correct pairing is labeled as that for which the array manifold vector projection on the
noise-subspace is ‘closest to zero’, and is followed by a MUSIC search in parameter space. This
method is computationally not very attractive.

2. Overdetermined direction data. If the sensor array has spacial redundancy, athird matrix pencil can
be constructed, having generalized eigenvalues equal to the quotient of the correct parameter pairs.
These quotients can be used to search for the correct pairs. This method was aso proposed in [5].
See section 3.1

Both these approaches are not particularly elegant, in the sense that they are not very well suited to com-
bine with the VLSI integration of the ESPRIT algorithm as proposed in [3] for the 1D case. We would
like to solve the problem with linear algebra, rather than with combinatorics.

In this paper, two new approaches are considered, both based on the observation that the data matrices
share the same common set of eigenvectors in case no noise is present. Two matrices sharing the same
eigenvectors can be diagonalized by the same similarity transform, and hence the two underlying pencils
can be solved for by diagonalizing thefirst pencil, and applying the similarity transform that was needed
to the second. The correct pairings are found directly. When noise is present, this property is lost. We
will describe how this method can be adapted such that the correct eigenvalues of each pencil are deter-
mined, along with an estimate of the pairing. The first new approach is based on this idea, and yields
good results, yet is“in style” with the VLSI parald array architecture described in [3] and is extremely
cheap in number of extra operations. See secion 3.2. The underlying property was already mentioned in
[6] and was exploited there in some sense, along with spacial overdetermining to improve the resolution
and correct pairing results.

The second new approach isbased on the ideato approximate the data matrices by adding small perturba
tion matrices such that the resulting matrices will have equal eigenvectors, or, equivalently, that the two
resulting matriceswill commute. Thisapproach wasbriefly reportedin[7]. It wasbrought to our attention
that asimilar, although not identical, approach was presented independently by Swindlehurst and Kailath
[8], who perturb only the second matrix such that its eigenvectors will coincide with the eigenvectors of
the first (unperturbed) matrix.

In section 2, ashort review of the ESPRIT datamodel is presented, along with areview of the correspond-
ing matrix pencil approach and of the properties of the data in the noise free case. Section 4 discusses a
number of approaches to enforce these properties on noisy data, in context with areview of some other
algorithms. We finish with some simulation results.

2. PRELIMINARIES
2.1. Thedata model

Consider m sensor triplets, each composed of three identical sensors with unknown gain and phase pat-
terns, which may vary from triplet to triplet. For every triplet, the displacement vectors dyy, and dy, be-
tween its components are required to be the same (and, for convenience, are assumed to be orthogonal).
Thisway, assigning the three sensor of each triplet to each of the sensor-arrays X, Y, Z, respectively, three
identica although displaced arrays are obtained. Thisisadirect extension of the 1D ESPRIT scenario to
two dimensions (see also [9]). Impinging on every array are d narrowband non-coherent signals sc(t),
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having an unknown complex amplitude § and a known center frequency wy:
s(t) = §e® k=12....d

Assuming the noise at the receiver to be additive, stationary and of zero mean, the output signa of the
i-th sensor of each array will be

Xi(t) = o1 aks(t)+m(t)
yit) = T8 an@es(t) +nyi(t)
z(t) = YL, axBes(t) +na(t)

where aj is the gain of sensor i for signal s¢(t), ny, Nnyi, Ny represent noise signals, and @ and 6y are
complex scaling factors of unit length, representing the phase shift caused by the differencesin path length
along the direction of propagation of incident waves. These numbers depend directly upon this direction,
and, when u is the direction of propagation of s¢(t), they can be written as

G = e—jwo(dly-uk)/c
B = elwn(dgu/c

1)

in which c is the signal propagation velocity. By collecting N snapshots from each sensor, three data
matrices X, Y and Z can be formed, obeying

X = AS+ Ny

Y ADS+ N, )
Z = AGS+N,

where X(i, j) = %i(tj), A(i, k) = aik, Sk, j) = s«(tj) and Nx(i, j) = ny(tj), and likewisefor Y and Z. X, Y
and Z are the data matrices (dimension mxN), Aisthe array gain matrix (mxd) and Sisthe signal matrix
(dxN). The matrices A and S are unknown, and are not rank-deficient by assumption. The matrices ®
and © are diagonal and contain the phase shifts (1) for each signa.:

® = diag(Q, @, Q)
© = diag(6y,62,...,6q)

The DOA problem is to estimate @ and ©. From these matrices, the angles of arrival can directly be
computed.

2.2. The subspace approach

Matrix polynomials of the form E—aF,a O C , are called matrix pencils. Forming the pencils
X=AY = A(l-AD)S+ (Nx—ANy)
X-pZ = A(l-HO)S+ (Nx—pNy)

itisseen that, in the noise free case, numbers A = Aj and p = W, i, j = 1,2,...,d, that reduce the rank of
the pencil by one are equa to cg‘l and 6171 respectively. With square data matrices, these rank reducing
numbers are the generalized eigenvalues of the matrix pairs (X,Y) and (X, Z).

With noise present, however, alarge number of samples are taken to improve accuracy. Asaresult, X, Y
and Z will not be square. Noise will also increase the rank of the pencils, and thiswill introduce new rank
reducing numbers. By computing a Total Least Squares projection of the data matrices (see e.g., [10] on



this), and using the observation that, without noise, these matrices have a common (d-dimensional) row
space and a common column space, it is possible to find square d x d matrices Ey, Ey and E,, whose gen-
eralized eigenvalues are estimates of the d origina rank reducing numbers. The next discussion closely
follows the approach outlined in [3, 4]. Compute the SVD’s of two matrices, constructed from X, Y and
Z

X Y Z]=U5V)

X U2
Y | =USV5 = | Uy | 2V
Z Uz

whereU; andV; areunitary matrices, ¥; isadiagonal matrix containing thesingular values, and ‘" denotes
herrmitian conjugation. Optimal (in the Frobenius norm) rank d approximations of these matrices are
obtained by setting the (m—d) smallest singular values in both ; and 2, equal to zero, yielding S, and
%, and approximations
X Y Z =02,V
X |-

A a 3
Y | =UZ (©)

N

inwhich U;, V contain the d columns of the U;, V; that correspond to the nonzero singular values in ;.
The TLS approximations X, Y, Z of the data matrices share the same column space range(U;) and row
space range(\72), as explicitly determined in (3), and are obtained by projecting X, Y and Z onto these
subspaces:

X UUHX (V) = UiEVS
Y o= (GU0))Y(VV) = UiEVS
Z U0 Z(WV) = UiENS
inwhich Ey, Ey and E; are square d x d matrices, and with
Ex = UI'XVo=UjUxn3,
E, = U]YVa=UjUx%, (4)
E, = Uz =055,
and
U |
szz =U;
U2

The generalized eigenvalues GE(E,, Ey), or the eigenvalues of E; 1Ey, are equal to therank reducing num-
bers of the matrix pencil X —AY. The same holds true for the generalized eigenvalues of (E;, Ey) and the
pencil X —AZ. To determine these eigenvalues from the E;, multiplication by £, can even be omitted,
because this does not influence the result. For amore detailed discussion of the operations involved, and
hintsto a VLS| implementation, see[3].



Substituting (2) in (4) and defining Ae = UfA and S, = SV, we arrive at

Ex = AeSe + Nx,e
Ey = Aeq)Se + Ny7e (5)
Ez = AeGSe + Nz,e

where Ny e = Uj'NWV5, and similarly for Nye and N, e.
2.3. Properties of E4, Ey and E;

When we define

Ei. = E'E=S'0S

E: = ElE =S'0% ©)

itisclear that E; and E,, whose eigenval ues we want to compute, share the same set of eigenvectors. This
means they can be triangularized by the same unitary matrix Q: there exist unitary matrices Q1, Q2 such
that

QEQ = Qi§'08Q = R
QEQ = RXFOSL = R

with Q1 = Q2 = Q, and the upper triangular matrices R, and R, have main diagonals equal to ® and
O, respectively. Because the same matrix Q will triangularize both E; and E;, the one-to-one correspon-
dence between the (¢'sand 6;'sis preserved in the positional correspondence on the diagonals, and no pair
matching operation needs to be done. Of course, due to noise, E; will be of full rank, and Q, will differ
somewhat from Q.. Thisdifference isassumed to be only small in the ‘rotational perturbation’ approach
in section 3.2.

(")

To assess the difference in eigenvectors of E; and E», recall that two matrices with the same eigenvectors
commute. Thus, in the noise-free case,

E1E; =B

We will devise, also in the next section, an algorithm that determines small additive perturbations of E;
and E; such that the above relation holds.

3. ABRIEF TOUR OF PAIR MATCHING ALGORITHMS
3.1. Thesearching algorithm

In the algorithm reported by Zoltowski et d. in [5], which we will name the * searching algorithm’, three
instead of two pencils are formed:

X=AY = A(I-AD)S + (Ne=ANy)
X-pZ = A(l-pO)S + (Nx—uN,)
Y-vZ = A(®-vO)S + (Ny-VN,)

From these equations we see that, without noise, the third pencil possesses rank reducing numbers v that
are exact quotients of the rank reducing numbers of the first two pencils:

_H_@
V'_)\i_ei



The searching method now tries to find two permutation matrices By, and By, that minimize the * matching
error’

|| diag(Ry) — Pydiag(Re)Py; - Pzdiag(Rs)Po; I

where diag(Ry) contains the estimated @, diag(R>) contains the estimated 8; and diag(Rs) the quotients
®/6;, determined from an extra Ez = E;'Ey. Notethat the parameter values are estimated by solving the
1D pencils (X,Y) and (X, Z) independently, and the extra pencil is only used in estimating the correct
pairing.

3.2. Matching using rotational perturbations

We now describe our first new approach to the matching problem. Experience gained with a Jacobi-
iteration method for computing the Schur decomposition, as discussed in [3], led to the following pair
matching agorithm, which can be integrated with the eigenvalue computations that are needed anyway.
The Jacobi-iteration method consists of a number of sweeps, which in turn consist of a certain number
of 2x2 elementary (Givens) rotations that solve 2 x 2 Schur decompositions. The elementary rotations
are extended by a permutation scheme to ensure ultimate convergence. Two observations from [3] are
that, near convergence, the Givens rotation angles are close to 0, so that the rotation matrix is close to the
identity matrix, and that the permutation scheme is such that after an even number of sweeps the entries
on the main diagonal have their initial ordering.

Triangularize E; asin (7) (in practise, do this with Generalized Eigenvalues): determine Q; to triangu-
larize E1, and simultaneously apply the same similarity transform to E;:

QEiQ1 = R
QlE:Q1 = R,

in which R, will be ‘amost upper triangular’ (in the noise free case, it would be completely upper tri-
angular), and its diagonal entries are rough estimates of the true eigenvalues of E,. Because of this, it is
assessed that only ‘small rotations’ in the Jacobi iteration algorithm are needed to make R,, upper trian-
gular; i.e. there exists aunitary Q) that will triangularize R,

Q'R =R

and which is close to the identity matrix in operator norm: Q, isa‘minimal rotational perturbation’ of
Q1 such that Q» = Q1Q, triangularizes E,. This means that Q, does not permute the rough eigenvalue
estimates in R, while computing the correct eigenvalues of E,. The correct eigenvalue pairs are thus the
entries at the same position on the main diagonals of R; and R,. Moreover, these eigenvalues are the
eigenvalues of E; and E, and hence the same as obtained in e.g. Zoltowski’s method: in effect, we have
solved two 1D independent eigenvalue problemson (X,Y) and (X, Z), but in aspecia way that gives us
the correct pairings amost ‘for free’. (Remark that, while the eigenvalues are the same asin Zoltowski’'s
method, the pairing may of course be different).

(8)

In addition, this agorithm is amenable to paralel VLS| implementation in the same way as the 1D algo-
rithm was [3]: the only operations that are needed are elementary rotations (on E; and R,), and amulti-
layer structure that allows the rotations that are performed on E; to be repeated on E; at the same time.
Finally, weremark that ‘ permutation-less rotations' for Q., are obtained automatically when an even num-
ber of Jacobi-sweeps is performed in the iterative computation of the Schur decomposition of R,: at the
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end of every second sweep, the ordering of the diagonal entries istheir origina ordering (see [3]).
3.3. Forcing commutativity of E; and E;

In the presence of noise, E; and E» do hot commute and can only be triangularized with different unitary
matrices Q1, Qy:

QEiQ1 = R
QEQ: = R

where Ry and R, are upper triangular, having diagonal entries that are approximations to the ¢’sand 6;'s
of (1). Itisnot possible to find the correct tuples ¢, 6k directly, because their ordering along the diagonals
of Ry and R, may be different. Because the non-commutativity of E; and E; is caused by additive noise,
theideaisto (partialy) cancel this noise by adding perturbation matrices to them in such away that their
commutativity is restored. Thus, we are looking for two perturbation matrices P; and P, such that

(E1+Pr)(E2+P2) = (E2+P2)(E1 +P1)
= (E1E2-E2E1) + (PIP=PoPy) = (EoPL—PLE2) — (E1P> — PoE1)
P, E
e (E1Ep—ExEy) + (PP-PoP) =[E, -Ei]| * |[-[P. PJ| 2
P -E1
and such that Py, P, obey some minimum norm constraint. Thuswith e.g., aFrobenius norm, the problem
is
min [|Py[|2 + |P2[|2
-E, 0 I [
suchthat [Py P, ] = -1 0 -P; =0
EEi-EiE; -Ex Eg -P,

(9)

After determining the solution to this non-linear minimization problem, only the eigenvalue decompo-
sition of (E; + P1) needs to be determined. The same unitary similarity transformation that will make
(E1+ P1) upper triangular will also triangularize (Ez + P,). The assumedly more accurate parameter pairs
follow directly from the entries of the diagonals of the resulting matrices.

The exact solution to thisminimization problem isin general hard to find, but could be obtained by means
of nonlinear programming. Note that equation (9) is a kind of generalized (constrained) Hamiltonian
equation: it would represent aRicatti equation if [Py P»] would be asquare matrix S, and then the problem
would be

|
[SI]H[_S]:0

in which case S has a solution given in terms of the eigenvalues of H. However, this insight does not
really help in solving our problem. The non-square-ness makes our problem singular, and implies that
there isacollection of perturbation matrices that makes the matrices E;, E, commute.

An approximate solution for P; and P, that is easier to compute can however be obtained by neglecting
the term PP, — P,Py;, under the assumption that the perturbations are small in comparison with the E;
anyway. Thisresultsinacondition, linear intheentries of Py , P> that has close resemblance to aLyapunov



equation, viz.
BX-XB=C,

(with B, C square matrices however) which can be solved by Kronecker sums. Evaluating thislast method,
we arrive at the following equations:

vec(Py)

-ef0e E0-5)| v

] = vec(E1E2 - E2E1)

(where the Kronecker sum A0 B equals A | + 1 0 B, O isthe Kronecker product, and vec(A) is avector
obtained by stacking the columns of A). From this equation we can find, using the M oore-Penrose pseudo-
inverse denoted by ‘*’, the solution with minimum perturbation norm,

[ ngg ] — [EJ0E, EJ0-E]" vec(E E,-EE,) (10)
While solving the above equation in this way is obviously a computational overkill compared with the
origina problem, it does find the minimum norm solution to the approximate problem, and can give hints
to a (much more) efficient solution. 1t should be remarked that the usual agorithm to the Lyapunov prob-
lem involves an eigenvaue decomposition of B, and can not be used directly in our problem since the
matrices are not square. Also note that, due to the approximation P,P, — P,P; = 0, the resulting matrices
(E1+P1) and (E2+ P2) do not commute precisely.

Another possible simplification of the problem (9) to make it solvableisto add aperturbation term only to
E, i.e., totake P; = 0 (see dso Swindlehurst and Kailath [8, 11]). The resulting matrices E; and E> + P>
do commute, and P, is obtained via a Kronecker sum:

vec(P,) = [E] O -E1] " vec(E1E - EzE1) (11)

Because E; isnot perturbed, the estimation for @ isthe same asthe estimation obtained in sections 3.1 and
3.2. ® = eig(E;). The estimate for O, i.e., the eigenvaues of E; + P, is, of course, in genera different
from the estimate obtained in the previous sections.

In this respect, note that the method of making matrices commute by adding small perturbation matrices
to them is not too well-posed: if E; and E; are similarity-transformed to Ej = TE; Tt and E, = TE, T4,
then their eigenvalues stay the same, yet the minimum norm perturbations that must be added to make
them commute are different (not equal to TP, T~ and TP, T™1), and hence the resulting eigenvalues of
E1 + P1 and E5 + P; are dso different: the solution is dependent on theinitial parametrization of the prob-
lem. Asan example, take T such that E; is diagonal (and equal to the estimated value of @), then E; is
not yet diagonal, but can be made diagonal by adding a perturbation P,. It turns out that the minimum
norm perturbation is such that the off-diagonal entries of E/, are zeroed, while the main diagonal entries
areleft intact: the estimated value of © is© = diag(E5), which is not unlike the intermediate results of
the ‘rough estimate’ preprocessing in section 3.2 (equation (8)).

4. SSIMULATION RESULTS

To give an indication of the behaviour of the methods discussed in the previous chapter, we devised the
following test scenario. Inal simulations, the number of sourcesis d = 4, and their angles of incidence are
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(10°,25°), (15°,20°), (20°,15°) and (25°,10°), respectively. The sensors are arranged in a square array
of 5x5 sensors, and are al equal to each other and omnidirectional. Their interdistance is taken to be
A/4, where A isthe wavelenght of the signals. The number of samplesisN = 100, and all possible sensor
triplets are taken into account, resulting in X, Y and Z matrices of size 16 x 100. For each agorithm, two
signal/noiseratios (SNRs) are considered: 54 dB and 40 dB. For thefirst case, 100 test runs are performed,
while for the 40 dB case 400 runs are done.

In the simulation, method 1 isthe ‘rotational perturbation’ method (section 3.2), method 2 is the additive
perturbation method with P, and P, according to equation (10), whilein method 3 we take the perturbation
P, = 0and P, asin equation (11). Theresultsaredisplayed in figures 1-3, and some statistics are coll ected
intable 1.

While one must be careful with drawing general conclusionsfrom asingle example, thefollowing remarks
can be made. From figure 1(a) the fact that the ‘rotational perturbation’ method computes the eigenval -
ues of E; and E; independently is reflected in the circular shape of the variance clouds. In contrast, the
variance clouds in figure 2 and 3 exhibit the line structure of the source configuration, which shows that
in the additive perturbation methods the azimuth and elevation directions are not treated independently,
and that these methods tend to enhance the source configuration in their estimates.

Finally, when the noise level is increased, method 1 starts to fail (figure 1(b)), apparently because the
assumption that R, in equation (8) is ‘almost’ upper triangular is no longer satisfied. The effect of the
increase in noise level on method 2 resultsin alarger variance in adiagonal direction, while method 3 has
alarger variance in vertical directions (‘larger’ isin comparison with the 1D variance of the eigenvalues
of unperturbed matrices, e.g., with respect to the variance of parameters in azimuth direction in figure
3(b)). This effect becomes more pronounced when the noise level is further increased.

Table 1. Estimate statistics

SNR =54 dB (100 runs) SNR =40 dB (400 runs)
mean(@) mean(6;) | std(q) std(8) | mean(@) mean(6;) | std(q) std(6)
Method 1 10.00 24.98 0.2 0.2 9.66 24.00 13 34

15.01 20.00 05 0.6 14.66 19.50 2.2 38
19.98 15.01 05 05 20.39 15.47 21 39
25.02 9.98 0.2 0.2 25.35 11.14 14 4.0
Method 2 9.96 24.99 0.7 0.7 9.07 25.94 24 29
14.98 19.97 0.7 0.7 15.14 19.93 2.2 24
19.98 14.99 0.7 0.7 19.90 1524 21 2.2
25.05 9.92 0.8 0.7 26.04 9.10 3.0 2.5
Method 3 10.00 24.98 0.2 0.3 9.66 25.23 13 19
14.99 19.98 05 05 14.66 20.34 2.2 18
19.90 15.06 0.5 0.4 20.39 14.73 2.1 18
25.01 9.94 0.2 0.3 25.35 9.94 14 1.9
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