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ABSTRACT

This paper summarises a study performed by
Integricom and Erasmus University for Eurocontrol in
the framework of the SBAS operational validation
programme. It defines a structured approach towards
the assessment of the integrity that is provided by the
EGNOS system from measurement data. It proposes
to validate the system in the range domain using the
error-overbounding concept and develops a statistical
test to assess the likelihood that overbounding is
achieved without using unverifiable assumptions on
the error distributions that are involved. Special
attention is paid to a meaningful extrapolation of the
tails of the observed error distributions using extreme
value theory (EVT), in order to address the very small
probabilities in which the integrity risk requirements are
expressed using a limited amount of data.

1. INTRODUCTION

This paper summarises a study performed by
Integricom and Erasmus University for Eurocontrol in
the framework of the SBAS operational validation
programme. To validate system performance of the
EGNOS system, it will be required to demonstrate the
quality of the positioning solution that the system
provides at the level of very small probabilities (in the
order of 10" per hour of flight for aviation applications).
While an important part of the demonstration of
sufficient performance will consist of simulations and
system analysis, especially to assess the performance
under specific rare environmental conditions, this
paper rather focuses on the assessment of the level of
integrity from measurement data.

In the first part of the paper, the operational
requirements for the system are reviewed and the
corresponding requirements for system validation are
derived. In the second part of the paper, a statistical
test is developed to derive the probability that the
requirements are indeed met by the system. There is
only room for explaining the main line of arguments
laid down in [Ober04], which means that mathematical
details are not provided and many subtleties of the
statistical approach are not considered. Two important
aspects that are not considered need at least
mentioning here. First of all, in any statistical

performance assessment, it is important to pay ample
attention to the level of time correlation between the
measurement samples as this is one of the main
drivers of the uncertainty in the assessed system
performance, whatever statistical method is applied.
However, as the many different error sources in the
system all have their own correlation properties, an in
depth analysis of the influence of these dependencies
is complicated and considered beyond the scope of
this paper. Furthermore, SBAS system errors are
known to be nonstationary: their error properties are
highly varying in time [Walter03]. One should therefore
establish precise sets of ‘equivalent user conditions’
under which the performance is well described and
analyse performance for each of these sets separately.
Defining such ‘system modes’ is a far from trivial task.
In addition, rare system modes such as for example
ionospheric storm conditions cannot be expected to be
covered in most sets of measured data. While it is
important to deal with the existence of different system
modes, this is a complicated subject matter that will
not be addressed in this paper; it is silently assumed
that all data is collected under one particular system
mode here.

2. POSITION DOMAIN REQUIREMENTS

2.1 Operational integrity requirements

According to [SARPS], a system should obey the
following integrity requirement to support an operation
with an alert limit AL: “the probability that the position
error exceeds the alert limit AL while no alert is
generated within the alarm time of 6 seconds should
remain below Pg, = 2x107 per approach (which

typically takes 150 seconds). An alert is generated as
soon as the protection level PL exceeds the alert limit.”

As the system should simultaneously support all
potential operations that are allowed with the system,
and these operations might have different alert limits
associated with them, the conditioning on a particular
alert limit is usually dropped which gives the following
stronger and simpler requirement (which implies the
previous one): the probability that the position error
exceeds the protection limit PL should remain below
2x107 per approach (which typically takes 150
seconds).



To link the probability per operation to the (so-called
‘marginal’) probability density function of the position
error at a given sample time, a translation is required
to convert the operational requirements to a probability
‘per sample’ and vice versa. Assume that the user
takes N samples during the operation. When all
samples are fully independent, the probability P, that

misleading information occurs during the operation
(that is, the position error exceeds PL) and the
probability of misleading information for each sample
P sample @re related by:

Py = NPMI,Samp/e (1)

When the samples are dependent, as they will be in
practice, this equation becomes inaccurate and the
real probability of Ml will drop below the value obtained
by applying this equation. Although it is important to
quantify this correlation effect in practice this problem
is not further discussed here: in the remainder of this
paper it is implicitly assumed that all requirements are
‘per sample’. The subscript ‘sample’ can therefore be
dropped and the required integrity level for each
sample is indicated generically by Pgre,. In mathema-
tical notation this gives the following operational
requirement for the system:

Py = P(lel > PL) < Pre, 2)

in which e is the position error.

2.2 Position-level integrity validation requirements

Statistical validation should assess whether the
probability of misleading information -as to be
estimated from the data - obeys the requirements from
the SARPS. For a specified type of operation the
integrity requirement is given to be Pgre, per sample.
Due to the random nature of the measurements, data
analysis cannot prove with certainty that the

requirements are met; it can, however, provide some
level of confidence P, that this is the case. When the
minimum acceptable level of confidence is set to some
value Pconruins this implies that the system validation
requirement is of the form:

P(PMI < PF\’eq)2 PConf,Min (3)

In a statistical validation campaign one should
therefore somehow compute the level of confidence
P(Py < Preq) that is provided by the data.

3. POSITION-DOMAIN OVERBOUNDING

In the position domain, the operational integrity
requirement tells that the probability that the actual
position error exceeds the protection Ilevel as
computed by the user should remain below some
value Pgreq. One could turn this argument around and
state that the protection level should be computed
such, that (2) is indeed obeyed: the protection level
computation relies on a model distribution that should
overbound the actual error distribution. Overbounding
is a concept that describes the relation between the
actual error distribution and this model distribution and
is further discussed in the second part of this section,
as it will be required to address the protection level
computation first.

3.1 Protection level computation

The SBAS system provides the user with both
corrected pseudoranges and with standard deviations
o; that describe the quality of these corrected

pseudoranges in terms of a model distribution - that
has been chosen to equal a zero-mean normal
distribution. The model's standard deviation that is
broadcast should be such, that the use of the model
distribution always leads to conservative performance
estimates.

range domain overbounding

position domain overbounding

protection level exceeds the actual position error with a
sufficiently small probability

Figure 1. Requirement summary: in this scheme, the range domain overbounding requirement is
the most conservative, but also the most generally valid one: it applies to any kind of operation,
regardless of the specific integrity requirements, and to any satellite geometry; the requirement
that the protection level exceed the actual position error is the least conservative but is only valid
for a given type of operation with given integrity requirements; furthermore, it might be obeyed

for some geometries but not for others.
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Figure 2. The concept of cdf overbounding: while the pdf of the model distribution cannot exceed the
pdf of the data (as approximated by a histogram on the left-hand side), the overbounding distribution
has a larger ‘exceedance probability’ (the probability that the error exceeds some value L) for all
positive values of L. In the plot of the exceedance probability, the overbounding model should therefore
always lie above that of the distribution of the actual errors (as approximated by the empirical

exceedance probabilities).

To assess the integrity of his position, the user
computes the standard deviations o, and o, of the

model's horizontal and vertical position error
components. To avoid duplication, the remainder of
this paper will consider the vertical position error
component only; similar arguments also hold for the
horizontal error, and the ‘ver’ subscript will often be
dropped to reflect the general validity of the line of
argument.

Because the pseudorange errors are (almost) linearly
related to the position errors, o, can be computed as

linear combination of the pseudorange sigma’s:
Sver =Gver1°01+-..tJvern "ON (4)

In this equation, the g-factors constitute the
measurement geometry. The standard deviations are
multiplied by a factor K, to arrive at the vertical
protection level:

VPL(ti) = Kver *Gyer (5)

For the vertical position component the model
distribution is a zero mean normal distribution with
standard deviation c,,,. The K-factor is defined such

that (2) is met with equality for the normal model and
are therefore closely related to a particular integrity
requirement Pg.,, see [Roturier01] for details.

Whether (2) is also met for the actual distribution of the
position error obviously depends on the relationship
between the actual and the model distributions: as
stated, the model should be such that it always gives
conservative performance estimates. In technical
terms, one expresses this by saying that the model
distribution should overbound the actual error
distribution.

3.2 Overbounding

This section briefly explains the technical details of the
exact meaning of overbounding. When the ICAO
SARPS speak of overbounding, this implies
overbounding in the sense that could more precisely
be called ‘cdf-overbounding. The cumulative
distribution function (cdf) represents the energy under
the distribution rather than the probability density and
will for general distributions be denoted as F,.s here.
The value Fp,.s(L) equals the area under the distribution
from -c0 to L, and is thus defined as:

Foos(L)=Ple <L)= [ pdf,q(e)de. (6)

When the cdf of the actual position error distribution is
written as Fo a0ruar @nd the cdf of the overbounding
Gaussian distribution with standard deviation o is
denoted by the special symbol @, one can say that

the actual distribution is overbounded by this Gaussian
model when the following conditions hold:

left tail : @ (-L) = Fpos actua (—L) for all L > 0
right tail : ® (L) > /Epos,actua/(L) forallL>0

in which the right tail's exceedance probabilities are
defined using the ‘bar’ notation as:

(L) =1-D,(L)

. 8

Fpos,actual(L) =1_Fpos,actual(L) ( )
From this definition it can be seen that overbounding
does not rely on the existence of a special point (like
an ‘alert or protection level’) on the distribution where
‘overbounding’ starts. Conceptually, overbounding
exploits the fact that it is always advantageous to



make errors smaller. An attempt to depict the meaning
of overbounding has been made in Figure 2. It can be
seen that the overbounding pdf does not exceed the
actual one everywhere, although it necessarily does in
the ‘far out’ tail area, but the exceedance probabilities
of the model should always dominate those of the
actual error distribution.

It can readily be shown that overbounding implies that
the operational integrity requirement of equation (2) is
met regardless of the particular integrity requirement:

position domain overbounding =

(9)
P(lel > PL) < Preq for all Prey >0

As a result, the validation requirement (3) can
conservatively be written in terms of the probability that
the position’s error distribution is overbounded by the
SBAS model distribution:

P (position domain overbounding) > Pgonf min
= P(PMI < PReq) > PConf,Min for all PReq >0

(10)

There are two important reasons to prefer validation of
this overbounding relationship to using (3). First of all,
(10) does not rely on any particular value of the
integrity requirement and makes the validation effort
applicable to all possible applications simultaneously.
Furthermore, as shown in [DeCleene00], (9) and (10)
can be translated to equivalent requirements in the
range domain, while there exists no range domain
equivalent of (3).

4. RANGE DOMAIN REQUIREMENTS

Under certain conditions on the pseudorange’s error
distribution, the position-domain requirements can be
translated into range domain requirements. Note that
there is no known way to translate the requirements for
a particular type of operation with a particular integrity
into a range domain equivalent; current knowledge
only provides for a way to translate overbounding of
the position error position domain overbounding into a
range domain overbounding requirement, provided
that a number of extra conditions are met. In particular,
to guarantee that the translations works, the
(pseudo)range error's pdf needs to be [Pincus97],
[Schempp02]:

B symmetrical around its mean,;
E unimodal;
m overbounded by the Gaussian model distribution

Furthermore, the mean cannot be too large in relation
to the standard deviation of the overbounding
distribution - that is zero mean by design; for details on
the exact conditions, see [Schemp02]. As noted, under
these conditions the translation works for all possible
integrity requirements and thus for all possible phases

of flight - as it essentially ensures that the SBAS model
distribution is guaranteed to be conservative in both
the range and the position domain. Moreover, the
conditions above ensure that overbounding translates
correctly to the position domain for all possible satellite
geometries. Note that the conditions on the error
distribution are sufficient but not necessary. This
means that overbounding in the range domain is only
-as the SARPS put it — ‘one way’ of proving that the
position domain requirements are met. While
overbounding in the range domain is thus sufficient, it
is not necessary for meeting the position domain
requirements. However, there is currently no
knowledge on how the conditions in the range domain
could be relaxed — hence, from a practical viewpoint,
one needs to prove overbounding when validating the
system in the range domain.

When considering the distribution Fpg ey Of the

absolute value of the normalised pseudorange error
(that is, the error divided by the broadcast standard
deviation of the error model), Gaussian overbounding
in the range domain implies that the following holds:

2B(L) 2 Fpg potar (L) for all L 20 . (11)

in which @ equals the cdf of the overbounding zero-
mean Gaussian distribution with unit variance (which is
used to the normalisation of the errors); the factor two
stems from the fact that the absolute values of the
errors are considered instead of the errors themselves,
which makes sense because the distribution is
assumed to be symmetric around zero.

Validation of the system in the range domain requires
showing that the overbounding relation (11) holds for
the actual but unknown error distribution with a
sufficiently high probability Peons i -

P[(Z(T)(L) > Fpg actual (L) for all L>0)

oy 2 PConf,Min (12)
+extra conditionson pdf are met

which is the range-domain equivalent of (10).
5. RANGE VERSUS POSITION DOMAIN

When validating the system, both the position and the
range domain can be taken as a starting point. As the
range domain errors themselves are a sum of multiple
error sources (related to satellite ephemeris, satellite
clock, ionospheric and tropospheric delay and the
receiver) one could even consider analysing each of
these sources separately for overbounding, although
that will not be considered here.

It can be viewed from the discussion above that each
validation domain has its pros and cons. The main
disadvantage of the position domain is that the results



that are obtained are not valid for arbitrary geometries.
Geometry is one of the major drivers of the position
domain performance of the system and will vary for
each operation. As the system requirements should be
met for each individual operation, one should ensure
that the system integrity suffices regardless of the
geometry. For that reason, the position domain is
considered to be inappropriate as the main validation
domain and it is recommended to consider the range
domain as a starting point instead: even though
validation using the range domain is more
conservative, it delivers generally valid results and as
such is apter for validation than the position domain.

The major disadvantage of range domain validation is
that it is build upon the assumption that the range error
distributions are symmetric, unimodal and only slightly
biased. One could consider to test formally whether all
these conditions are actually satisfied. However,
symmetry and unimodality are not easily testable, and
testing them against a high level of confidence might
make the integrity assessment extremely conservative.
Furthermore, these conditions might not even be
required as they are only sufficient but not necessary.
It is therefore proposed in [Ober04] to rather check
explicitly whether overbounding is indeed translated to
the position domain, for a necessarily limited -but
representative- number of geometries. There are
number of different options here. One could for
example select geometries that have been observed
during a measurement campaign (by either using the
all-in-view solution or any other ‘rule’ to compute
positions), essentially building up a position error
distribution that corresponds to the particular mix of
geometries as they have occurred during the
campaign. One could also generate position error
distributions from the range errors and their models
that have been observed, by ‘off-line’ computing of the
position error distributions that would be governed by a
certain number of selected geometries. In the latter
case, the geometries can be selected independently of
the data collection, which provides a larger degree of
freedom in the geometries that can be studied. The
main tradeoff that has to be made is the one between
the number of geometries used in the check versus the
amount of processing time one is prepared to invest.

6. TESTING FOR OVERBOUNDING

Overbounding is not related to a single quantile of an
error distribution, but rather to the whole distribution
function: all quantiles of the actual error distribution
should be smaller than the corresponding quantiles of
the overbounding model distribution. As the actual
error distribution is unknown, all inferences should be
based on its sample equivalent that is usually referred
to as the empirical distribution function, here written as

Foctuar (L), which is defined as the fraction of samples
that remain below L:

- number of samples < L
F actual (L) = N p .

(13)

One way to check whether overbounding is present1, is
to compare the observed and the model distribution at
some grid of selected quantiles of interest [Barrett03.
For simplicity, consider the case that two points L; and
L; are checked and that confidence values Pcy; and
Pconsj are obtained in the statement that the model is
indeed conservative at these points. The question then
becomes, how much confidence the two separate
checks together provide in the statement that
overbounding is present at both quantiles. When the
tests would be independent, the answer to this
question would be easily obtained: the probability of
overbounding in both checks equals the product Pcopy;
Pconsj - the confidence is thus reduced due to the fact
that each of the checks can fail: the more checks are
done, the higher the probability of finding at least one
quantile that is not modelled conservatively. In reality,
the checks will be highly dependent, making the effect
of a reduced confidence level much less severe than
sketched above. Unfortunately, the problem of exactly
computing the influence of dependence is unsolved
[Dufour97], which means that this fact cannot be
exploited easily.

It is conceptually simpler to use a test based on a
global measure of the distance between the error
distribution and the overbounding model. One of the
standard tests that could be considered is the
Kolmogorov-Smirnov test. The standard Kolmogorov
statistic KS is defined as the largest difference
between the empirical (data-based) distribution

Foctuar (L) of the normalised absolute error and the
normal model:

KS =max(2B(L) - Facuar(L) (14)

KS can be used to assess whether the actual
distribution  significantly differs from the model
distribution: a large value indicates that at some point,
the model lies much above the actual distribution
[Conover80]. However, to validate overbounding, it
needs to be checked whether the model overbounds
everywhere, which rather calls for using the smallest
vertical margin between the model and the empirical
distribution (which should be sufficiently large to
provide sufficient confidence). This gives the candidate
test statistic KS', see also Figure 3:

KS' = min(25(L) ~ Foger (L) (15)

' As the overbounding requirement has exactly the same
form in the range and the position domain, the discussion
here refers to both domains



It can be seen that intuitively, large values of KS’
indicate that overbounding is likely, while values near
or below zero make overbounding unlikely. Note
however, that the test statistic as defined above will
never be smaller than zero, because:

B near zero, the actual distribution and the model
distribution necessarily coincide, that is,
Factual (0) = 20(0) = 1

m at infinity the model and the empirical
distribution again coincide, that is,

Fastuar () = 20(00) = 0

In practice, the test statistic should therefore be
adapted to exclude the regions around zero and infinity
to read:

KS'= min  (28(L)-Foar (L) (16)

Lmin<L<Lraj

The new test statistic now only tests for overbounding
on the interval Ly;, <L <Ly, in which Ly, is the

start of the tail of the distribution. This can be justified
on basis of the following observations:

m for the near-zero errors below some small
threshold L,;, non-overbounding is acceptable
as these will not degrade the performance
significantly;

m for L > Ly,; aseparate test for overbounding will
be devised shortly.

Unfortunately, the distribution of KS’ will depend on the
unknown distribution F,,, . However, one can derive

a conservative bound that does not depend on this
distribution [Conover80] and use it to derive the

probability ﬁOver that overbounding is achieved when

’

a value of KS;,, is observed:
P (overbounding | KSps ) = Poyer (17)

Note that the ‘hat notation’ is used to indicate that the
confidence level/overbounding probability is estimated
from the data. Alternatively, resampling procedures
could be used to assess the distribution of KS’ and the

value of 150ver using only the data themselves, see for
example [Politis99] and [Lahiri03].

6.1 Testing the tails of the distribution

One important issue has not yet been addressed in the
discussion above. SBAS validation requires
assessment of the extremely small probability that the
integrity of the system is compromised. It will therefore
be required to obtain insight into the likelihood of errors
that have a near-zero probability to occur. Such errors
will generally not be observed in the data, as they are
just too rare. To enable the extrapolation of the error
distributions into the tails, it is proposed to use
extreme-value theory (EVT) rather than imposing
strong and unverifiable assumptions on the tails (such
as the often used assumption of normally distributed
errors). EVT is a recently developed but already well-
established and mature field in statistics that provides

o _ <
¥ | empirical (data) T overbounding (model)
distribution / distribution
overbounding (model)
distribution I KS' (vertical margin)
FosH [/ Fo24  TLX
IKS'(verticaI margin) empirical (data)
distribution
< <
o T T o | T
0 2 4 0 2 4
X X

Figure 3. The Kolmogorov statistic KS’ indicates whether the empirical distribution function
always exceeds the model distribution with sufficient margin. KS’ has a negative sign here,
corresponding to a favourable margin. As noted in the text, the margin will be zero around 0 and
at infinity — the start and the tail of the distribution are therefore to be disregarded to arrive at a
practical margin. On the left hand side the original cdfs are depicted, on the right hand side the

corresponding tail probability.



statistical methods that allow for the estimation of the
probability of the occurrence of rare events regardless
of the underlying error distributions [Embrechts97].
The application areas in which EVT has been
successfully used are numerous and include hydrology
(flood frequency analysis), finance, insurance
(insurance and reinsurance risk assessment, claim
size assessment, asset price analysis), environmental
analysis (ozone level, pollution analysis), meteorology
(wind strength and rainfall assessment), earthquake
risk assessment) and many engineering areas
(corrosion and fatigue prediction, telecommunication).
EVT is applicable regardless of the underlying error
distributions of the measurement data, relieving the
need for the a priori assumption of Gaussian error
distributions. The properties of the tails of the error
distributions can be derived from the measurement
data and some generally valid a priori considerations,
allowing to meaningfully extrapolate the data into the
region of misleading information, even when no (or
very limited amounts of) sample values in this region
are available. A goodness-of-fit check can be used to
check the a priori assumptions. By finding a data-
based description of the tails of the error distributions
the ICAO conditions can be validated for the tails of
these distributions and the actual protection level can
be estimated from the measurement and/or position
estimation error data.

One way to assess the probability of overbounding
using EVT is to define an extrapolated version of the
Kolmogorov statistic:

KSpe = min (20(L) - Fogguarent (L) (18)

L2Lra

in which Ifac,ua,’ext(L) is no longer the ‘normal

empirical error distribution as in (13), but rather its
EVT-extrapolated equivalent, as indicated explicitly by
the subscript ‘ext’ here. Overbounding will correspond

’

to KS,; >0 and that negative values of KS,,

indicate that the model is not conservative somewhere
on the distribution. By computing (18) for the whole
dataset, one can thus check whether overbounding is
present. For practical computations, one can use the
fact that the error and model distributions are
continuous and evaluate the right-hand side of (18)
only for a limited number of values of L ranging from
the start of the tail L7, to the largest quantile that is
considered to be of interest — which should have an
exceedance probability that is considerably smaller
than the integrity requirement that is to be validated.

To find the probability that overbounding is achieved
for the actual error distribution, one should go one step
beyond this simple check and include the uncertainty
in the estimation of the unknown error distribution.

’

Because the distributional properties of KS,, are

unknown, one needs to use a method like resampling
(bootstrapping) to compute the probability that the

model distribution indeed overbounds the actual
distribution [Haan03]. This approach is based on
selecting subsets of the data and checking each
subset for actual overbounding. Note that unlike what
was the case in deriving the properties of the bulk of
the distribution, the fact that there is data dependency
is not a problem when deriving properties for the tail
[Haan03]. For each subset, one can compute whether
overbounding is achieved by computing the
‘extrapolated modified Kolmogorov-Smirnov statistic’
and check whether it remains above zero
(overbounding) or not (overbounding). The estimated

probability If’o‘,e,,ta,-, that overbounding is achieved

approximately equals the fraction of subsets for which
the model actually overbounds the data, that is, the
fraction of subsets for which KS;,; exceeds zero.

6.2 Combining the overbounding tests

When overbounding probabilities IsoW and If’o‘,e,,ta,-,

have been estimated for both the bulk and the tail of
the error distribution, they can be combined into a

single confidence level Ppe4r for the whole

distribution (see also [Schluter02] and [Dufour97]).
Because the results on the tail are (asymptotically)
independent of those on the rest of the distribution
[Haan03], one can simply use:

POver,tot ~ POverPOver,tail (19)

because overbounding of the whole error distribution
requires both overbounding in the bulk and in the tail of
the distribution.

7. CONCLUDING REMARKS

This paper has assessed the use of data to validate
the integrity of the EGNOS system. It has defined a
structured approach towards the assessment of the
level of integrity that is provided. It has been shown
that a system analysis in the range domain has certain
advantageous above the use of the position domain;
not only does it provide more insight, as the signals
are essentially protected in the range domain, the
strong effect of geometry on the positioning
performance can be left out of the analysis. Finally,
much more data will be available in the range domain.
It is known that the overbounding concept can be
validated in the range domain when the range error
distributions obey some extra conditions (of being
symmetric, unimodal and near-zero mean). However, it
is hard to check these conditions. It is therefore
advised to test the system for overbounding in both the
range and the position domain; in which the latter is
essentially used to verify that the overbounding that is
hopefully found in the range domain indeed translates
to the position domain. Although a test has been
provided, this test is expected to be quite conservative;



unfortunately, standard tests don't seem to be
available; designing a less conservative test surely has
the potential to improve validation results by providing
a tighter bound on the probability that overbounding is
achieved and is therefore advisable.

The paper does not answer all of the many question
on how to validate EGNOS in a practical campaign.
One of the major issues that is yet to be fully resolved
is how massive amounts of data from many different
sources should be combined. Furthermore, it will not
be easy to process these massive amounts of data
within a reasonable amount of time — this will not only
require an automated way to handle the major parts of
the data analysis, but it will also be required to decide
on a number of trade-offs between the accuracy of the
performance assessment and the amount of computer
time that will be required. Accurate decisions are
envisioned to require that a substantial amount of data
is processed in a number of different ways first - in
order to gain insight in their consequences.
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