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ABSTRACT 
 
The paper investigates the integrity performance of three different position estimation algorithms 
that have been designed following the High Integrity Positioning (HIP) concept. Their 
performances are compared to both each other and the traditional least squares algorithm. Thus it 
is shown that the HIP concept offers definite advantages in terms of the integrity that can be 
achieved. 
 
 
1. INTRODUCTION 
 
Integrity and continuity requirements are important drivers of GNSS user equipment system 
design. Especially in safety critical operational environments, it is importance to exploit all 
available information to assess position integrity as good as possible - to avoid both being 
optimistic (compromising integrity) and pessimistic (sacrificing continuity).  
 
While position integrity is often the crucial parameter of interest, traditional positioning 
algorithms are generally optimised for accuracy instead and have to be combined with fault 
detection and exclusion schemes. Still, these algorithms give sub-optimal integrity. A new 
approach to algorithm design has therefore been introduced in [Ober, 1999] that takes integrity 
rather than accuracy as the parameter to optimise. This technique is referred to as High Integrity 
Position (or Parameter) estimation (HIP).  
 
The paper will first review the main ideas behind HIP. A recently developed Bayesian position 
domain methodology for integrity computation will then be exploited to compare the integrity of 
traditional least squares schemes with three different HIP estimators. A small-scale simulation 
shows that the HIP concept can indeed provide optimised integrity and availability. 
 
 
2. HIGH INTEGRITY POSITIONING 
 
Current positioning algorithms are almost exclusively based on least squares estimation schemes 
[Leva, 1996][Brown, 1996]. When the system is linear and measurement noise is normally 
distributed, this gives optimal accuracy: least squares is the best way to mitigate the effects of 
noise on the position. The obtained position is however sensitive to failures: a single wrong 
measurement (modelled as a bias) can cause an arbitrarily large position error. To warn the user 
that a failure is present, error detection has to be used.  



 
Error detection typically uses a test statistic based on the least squares residual, that in the 
absence of biases is the most accurate estimate of the measurement error. When the test statistic 
exceeds a certain threshold, an error is detected. It can be proven that the least squares residual 
and the position error are statistically independent [Ober, 1997]. The reason that detection still 
works is that both residual and position are influenced by the same deterministic bias. However, 
the noise in the position error is not reflected at all in the residual, indicating that the error 
detection properties – and therefore integrity- might not be optimal. In order to optimise integrity, 
a new approach to algorithm design is required, that focuses on the relation between position 
error and error detection signal, rather than on positioning and error detection separately. This 
concept has been introduced in [Ober, 1999] and is called high integrity positioning (HIP).  
 
In this paper, the integrity performance of three different HIP based algorithms is going to be 
compared. The algorithms will be evaluated by a relatively new Bayesian approach to assess 
integrity performance [Ober, 2000] that will simultaneously be the basis for two of the three HIP 
estimators and for the generation of integrity alarms. 
 
 
3. BAYESIAN ASSESSMENT OF SYSTEM INTEGRITY 
 
In [Ober, 2000] it is shown in detail how the statistical distribution of the position can be derived 
from the measurement data as a weighed sum of error distributions, in which the weights depend 
both on the measurement residuals, the statistical properties of the measurements and the a priori 
probabilities of failure. In this section, the main results will be summarised. 
 
The system is assumed to be sufficiently well described by an overdetermined (N > M) set of 
linear equations that relate the measurements to the unknown parameters as 

 z H x n b= + +        (3.1) 

with  
 
z : N-vector of measurements 
H :  N×M observation matrix 
x :  M-vector with unknown parameters 
n :  N-vector of measurement noise 
b :  N-vector of measurement biases 
 
As only single failures will be considered, it will prove convenient to use Ei to denote the event 
of a failure in measurement i and represent the no failure case by E0. The probability of 
occurrence of each event is denoted by P(Ei). Under the no failure case E0, the measurements are 
assumed unbiased, while under Ei the failing measurement contains an unknown bias.  
 
When the noise is normally distributed, the information on the position that can be extracted from 
the measurements can be summarised in a random variable that is distributed as a mixture of N+1 
normal distributions: 
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in which ,x iµ  and ,x iΣ represent the relevant mean and covariance under each of the events Ei. 
The weights are very informative, and are a function of all important parameters: geometry, 
satellite failure rate and least squares residuals under each event. They become larger when: 
 
1. the a priori probability P(Ei) is higher 
2. the residuals under Ei are smaller 
 
The exact probability of hazardously misleading information P(HMI) for an arbitrary position 
estimate is simply derived from (3.2) as that part of the distribution that lies outside the 
Horizontal Alarm Limit (see Figure 1). When P(HMI) exceeds the value specified in the integrity 
requirements, an alarm can be raised to the user. Note that this means that the alarm criterion is 
defined in the position domain, while traditionally alarm criteria are based on range-domain 
parameters such as the least squares residual (or parity vector). Another observation is that the 
expression (3.2) downweights measurements with high a posteriori probabilities of being biased. 
It therefore implicitly performs fault exclusion. 
 
P(HMI) expresses the integrity risk and measures the integrity of the position solution. It will 
therefore be used to assess the integrity of the different estimators that will be discussed. 
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Figure 1. The distribution of the position as a function of the measurements and the geometry



4. THREE HIP ESTIMATORS 
 
Based on the HIP concept, three different estimators have been designed, of which this section 
gives a short description.  
 
1. The first HIP method is based on the approximate (Horizontal) Protection Level from 

[Leva, 1996]. When the position error that is introduced by the ‘minimal detectable bias’ due 
to a failure of satellite i is written as PLi, the Protection Level is taken as the error introduced 
by the worst case satellite as: 

 
 max ii

PL PL=  

 
The estimator that minimises PL is the first HIP estimator, to be indicated as HIP1; some 
results of its performance can be found in [Ober, 1999]. It can be computed iteratively and is 
guaranteed to converge to a global minimum. 

 
2. The second HIP method is based on a full minimisation of the integrity risk P(HMI) and 

therefore also functions as a benchmark as it gives the best possible integrity. In practice, HIP2 
has the disadvantage of being iterative and more computationally expensive than HIP1. 
Furthermore, there might be multiple local minima that complicate the optimisation process. 

 
3. A computationally more attractive solution is to use the expected value of (3.2) as the 

parameter estimate of interest. This gives the HIP3 estimator. Due to the behaviour of the 
weights, this implies that the event Ei that is most likely to have been occurred given the 
measurements will dominate the position estimation, that therefore automatically more or less 
rejects measurements that are suspected to be biased. Intuitively, this implies that they should 
have a build in integrity that should not differ too much from the optimal value.  

 
Note that as they are based on (3.2), both HIP2 and HIP3 estimator contain fault exclusion 
functionality due to the downweighting of suspect measurements.  
 
 
5. SMALL SIMULATION 
 
A small simulation has been performed to obtain an impression of the performance 
improvements that might be obtained. Because of time limitations, it has been decided to 
postpone a full Monte Carlo study and look only at three different satellite constellations with 5, 
6 and 7 satellites in view respectively. In all cases, a noise vector is added to the measurements 
with a length such that it lies on the edge of the area that contains 95% of the noise vectors and 
random direction. On the worst case satellite, a bias of growing size between 0 and 2150 meters 
is added while the noise vector is kept constant to enable to compute integrity in terms of (3.2) as 
a function of the measurement bias. Arbitrarily, a horizontal cross-track error of 300 meters has 
been chosen. A GPS range sigma of 33.3 meters [RTCA DO-208] has been used, while the 
satellite failure rate from [GPS-SPS] has been applied. The results in Figure 2 have been 
averaged over 100 different noise vector cases. 



 
In the 5 satellite case, a rather low integrity is achieved with each of the estimators.  Least 
squares does perform better than HIP1 and HIP3 and achieves a performance that is only slightly 
worse than the best possible performance that is (per definition) achieved by HIP2. One can 
conclude that in this case, the geometry is the limiting factor and there are insufficient degrees of 
freedom to find better estimators. 
 
The 6 and 7 satellite cases are quite similar. One can clearly see the exclusion effect that occurs 
when large biases are introduced in HIP2 and HIP3. Their performances also become very similar. 
For smaller biases, least squares performance degrades at a much larger rate than HIP1. Both 
methods are unrobust in the sense that their performance degrades largely for large biases, and 
their availability will suffer from the fact that P(HMI) will grow rapidly beyond the allowed 
limits due to the lack of such an exclusion effect. 
 
In conclusion, one can say that the three HIP methods, and especially HIP2 and HIP3 have the 
potential gain significant performance when they replace current fault detection (and exclusion) 
schemes.  
 
 

Figure 2. The probability of an error outside of the allowed alarm limit as a function of the 
bias in the worst case satellite for both least squares and the three HIP estimators 



6. CONCLUDING REMARKS 
 
The paper has investigates the integrity performance of three different position estimation 
algorithms that have been designed following the High Integrity Positioning (HIP) concept. Their 
performances have the potential to reduce the probability of hazardously misleading information 
drastically, and can thus increase availability. This certainly justifies a more extensive 
investigation than the one presented in this paper.  
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