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ABSTRACT - This paper summarises the process of the selection of an algorithm for 
EUROCONTROL’s RAIM prediction tool AUGUR, focussing on design issues rather 
than mathematical details, which can be found in [Ober98]. The selection process is 
driven by the JAA requirement that the predicted availability be conservative when actual 
RAIM implementations are unknown. Algorithms from open literature are analysed to 
arrive at a conservative algorithm without sacrificing availability unnecessarily. 

 
 

1. INTRODUCTION 

Pilots that want to fly Basic Area Navigation in ECAC airspace using stand-alone GPS, possibly with 
barometer aiding1, will be required to check the availability of RAIM before taking off. To enable 
them to do so, the RAIM availability prediction package AUGUR has been developed for 
EUROCONTROL by STASYS Ltd. General information on AUGUR is available in a complementary 
paper [Harriman98] elsewhere in these proceedings, while this paper focuses on the selection of the 
algorithm that has been implemented. AUGUR can be found at the Internet at 
http://augur.ecacnav.com or http://augur.us.ecacnav.com. 
 
RAIM consists of two algorithms: an error detection algorithm, that detects actual satellite failures, 
and a ‘geometry screening’ algorithm. Geometry screening consists of computing the error detection 
performance as a function of the geometry and deciding whether this performance meets the 
requirements. Because there is no dependence on the actual GPS signals, the sufficiency of the 
geometry is predictable and can be computed in advance for any user position and time. In this paper, 
such computations will be referred to as RAIM availability prediction - or RAIM prediction in short.  
 
The prediction algorithm to be used by AUGUR has to obey the JAA requirement from [TGL-2]: “The 
programme should use either a RAIM algorithm identical to that used in the airborne equipment, or 
an algorithm based on assumptions for RAIM prediction that give a more conservative result”. 
 
It is important to understand that AUGUR has a purely operational goal: it aims at determining 
whether user receivers are going to experience any RAIM outages during flight. In other words: 
AUGUR tries to predict the behaviour of receivers rather than looking at the sufficiency of the GPS 
geometry as such. Because [TSO-C129] – to which GPS receivers have to comply receivers for 
Instrument Flight Rules (IFR) flight - does not prescribe any RAIM prediction algorithm, the 
implementation in the receiver is unknown. To obey the JAA requirements, AUGUR must err on the 
safe side and give a conservative prediction for all receivers.  GPS users, however, would not like to 
see availability sacrificed unnecessarily. The approach taken is therefore to be conservative within 
reasonable limits, given by the numerous algorithms and techniques that have been published in open 
literature. This paper gives an overview of these algorithms and shows how a suitable algorithm for 
AUGUR can be derived by taking conservative choices at different steps in the algorithm design. The 
algorithm selection process starts by showing how the exact performance of error detection algorithms 
can be determined. The second step is to review which approximations and simplifications have been 
proposed to arrive at practically applicable computations. The algorithm in AUGUR will incorporate 
all those approximations and simplifications that are conservative whenever practical.  
 

                                                      
1In most of the paper, use of the barometer is only implicitly assumed 



2. RAIM PERFORMANCE 

RAIM performance is measured in terms of two system parameters: alarm rate and missed detection 
probability. Both parameters depend on the satellite failure rate, the GPS range accuracy and 
measurement geometry. When the range accuracy and the failure rate of the satellites are assumed to 
be known, RAIM performance depends on geometry only. RAIM is therefore available as long as the 
measurement geometry offers sufficiently low alarm rate and missed detection probability. Its 
performance can only be computed within the context of a specified GPS system model. Although the 
real system model is non-linear, virtually all literature on RAIM algorithms seems to assume that the 
relation between the GPS measurements and the user position is sufficiently well described by an 
linearised overdetermined regression model. AUGUR uses this assumption as well. The measurement 
noise is usually modelled as normally distributed with zero mean. In case of a satellite failure, the 
measurement of the corresponding satellite is modelled to contain an (unknown) bias as well.  
 
2.1 Alarm rate 

As TSO-C129 receivers are not required to do failure isolation and removal, an alarm is raised 
whenever the error detection algorithm detects an error. Detection can occur due to noise only, while 
all satellites operate within specifications, or can be the result of satellite failures. If at most one 
satellite fails simultaneously2, the TSO-C129 receiver is required to detect this with at least 99.9% 
probability. Assuming conservatively that all failures are detected, the alarm probability equals 
 
 P(alarm) = P(erroneous satellite in view) + P(noise induced alarm)  
 
The [SPS] predicts that three satellite failures might occur every year for the whole 24 satellites GPS 
constellation. Assuming a 120 second correlation time due to selective availability, this value can be 
translated to a probability per sample to get 
 
 P(erroneous satellite in view) = 4.8⋅N⋅10-7 per sample when there are N satellites in view 
 
According to the [TSO-C129] requirements, the maximum alarm rate is 6.67⋅10-5 per sample. This 
means that the threshold of the error detection algorithm should be chosen such that the probability of 
a noise induced alarm probability should obey: 
 
 P(noise induced alarm) < (6.67–0.048⋅N)⋅10-5 per sample              (*) 
 
Often, the contribution of erroneous satellites is neglected [Brenner90, Sturza88, Brown92, Leva96] 
and the error detection algorithm is tuned according to P(noise induced alarm) < 6.67⋅10-5 . This leads 
to a slight overestimation of the system alarm rate and therefore AUGUR uses (*) instead. 
 
2.2 Missed detection probability 

The integrity of a system is affected any time the error in the position exceeds the maximum allowed 
error while the RAIM error detection algorithm raises no alarm. In that situation, the system is said to 
provide Hazardous Misleading Information (HMI). In principle, this can happen both with or without 
the presence of a satellite failure. However, for en-route application, the probability of a position error 
caused by noise only is negligible, as the nominal system accuracy is many orders of magnitude better 
than the maximum allowed position error. When the system meets the required 95% accuracy 
performance (100 meter), the probability of noise induced HMI is virtually zero. Therefore only the 
situations with satellite failures will have to be taken into account, and the expression for the 
probability of HMI can be written as: 
 
 P(HMI) = P(erroneous satellite in view)⋅P(position failure) ⋅(1-P(failure induced alarm)) 
 

                                                      
2  The probability of 2 failing satellites is 100 times smaller than the allowed undetected failure rate for 8 satellites in view 



due to the statistical independence of P(position failure) and P(failure induced alarm) [Ober97].  
 
When the position is computed from the measurements by least squares estimation, the normal 
distributions and linear model give a normally distributed position error distribution. This is 
elliptically shaped and is centred on the position bias, which depends linearly on the measurement bias 
of the failing satellite. P(position failure) is the content of the area of the error ellipsoid that falls 
outside the circle given by the allowed error range, see Figure 1a. The exact probability can be found 
by integrating the probability density function over the shaded area. Although straightforward, 
computation of the probability content of this area is quite expensive [Ober97]. It is therefore often 
approximated by simpler distributions. 
 
For failure detection, all RAIM error detection tests published use the least squares residual3 that is 
nothing but an estimate of the measurement errors and noise. The residual is normally distributed 
around a bias caused by the measurement bias in the failing satellite. The larger the residual becomes, 
the more likely that there is a bias (error) in the system. Error detection algorithms therefore define an 
“error detected” region and declare an error occurrence as soon as the residual lies in that region. Two 
choices for this region have been proposed: either a circle [DO208,Brown92,Sturza88,Leva96], see 
Figure 1b, or a square around the origin [Kelly97]. The former leads to an alarm probability that is 
described by the noncentral chi-squared distribution, and its use will therefore be referred to as 
applying the ‘chi-squared algorithm’. [Kelly97] proves that the use of a square region gives a slightly 
superior error detection performance. To stay conservative, AUGUR therefore assumes that the 
receiver uses a chi-squared algorithm. 
 
2.3 Dealing with the unknown bias 

In the case when a satellite error occurs both the probability of a position failure and an error detection 
depend on the unknown bias in the failing satellite. When the bias in a failing satellite grows, so do the 
biases in the position and test statistic, increasing the probabilities of a position error but also of 
detection. To enable the computation on the probability of HMI, some value will have to be 
substituted for the unknown bias to enable performance computation. Two strategies are known: 
 
1. Substitute minimal detectable biases 
2. Substitute worst case biases 
 
They will be discussed in the next two paragraphs. 

2.3.1 Minimal Detectable Biases 
The minimal detectable bias (MDB) principle (e.g. [Sturza90,Leva96]) approaches the ‘unknown bias’ 
problem as follows. The TSO-C129 requirements state, that position errors have to be detected with a 
probability of at least 99.9%. For this requirement, the minimal detectable bias is defined as the 
smallest satellite bias that can be detected with at least 99.9% probability. Satellite biases smaller than 
the MDB will be detected with a lower probability. 

                                                      
3  Often a so-called ‘parity vector’ is used, that has identical statistical properties, see [Brown92] 
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Figure 1a&b. The distribution of the position error and the least squares residual are both centred 
around the bias that is introduced by a failing satellite. 



 
The situation is depicted symbolically in Figure 2a. The solid line in this figure represents the relation 
between the size of the position bias and the size of the test statistic bias. The ‘cloud’ that is drawn as 
an ellipse (although no real ellipsoid in practice) represents the uncertainty that is introduced by the 
presence of noise. It’s centre shifts towards the upper-right for a growing satellite bias. The MDB is 
the value of the satellite bias that causes exactly 99.9% of the noise cloud to lie beyond the error 
detection threshold. 
 
It is important to realise that the MDB criterion implicitly assumes that every undetected satellite 
failure causes a position error. This effectively eliminates the need for a position error distribution! In 
reality, not all satellite errors result in HMI, as they don’t necessarily cause a sufficiently high position 
error. This would suggest that using the MDB gives conservative results. This would be perfectly true 
as long as the satellite bias indeed equals (or exceeds) the MDB. However, for some geometries 
satellite biases smaller than the MDB might cause higher HMI probabilities due to their reduced 
detectability. This means that for certain combinations of satellite geometry and satellite errors, the use 
of the MDB can lead to an underestimation of the probability of HMI. 

2.3.2 Worst Case Satellite Biases 
The possibility that the MDB approach could be underestimating the missed detection probability for 
certain satellite biases has been realised for some years now [Brown94,Lee95,Ober97]. Instead of only 
considering the detectability of a bias, as done in the MDB approach, these references all incorporate 
both the detectability and the chances of causing a position failure. They all propagate to solve 
explicitly for a worst case bias (WCB) that maximises the missed detection probability, as illustrated 
in Figure 2b. Unfortunately, the computation of the worst case bias for a particular geometry is 
computationally involved. The Approximate Radial error Protected (ARP) method [Chin92] has used 
Monte Carlo simulation to determine the worst case bias, but it is unclear whether the results can be 
applied for satellites constellations that differ from the one in the simulations. 

2.3.3 Unknown biases and AUGUR 
In the implementation of the AUGUR algorithm, it would have been appropriate to take the worst case 
bias approach because the MDB might lead to overly optimistic results. Unfortunately, the 
computational complexity of finding the worst case bias prevented the use of this approach, but this is 
most likely also true for current TSO receivers. Although the ARP method uses worst case biases and 
does most computations off-line, there are serious doubts whether its results are valid for general 
satellite constellations, making ARP a far from satisfactory alternative. Fortunately, when comparing 
the ARP outcomes to those obtained by MDB, it turned out that for the given requirements and 
satellite noise levels, MDB is more conservative than ARP is. This gives some confidence that 
receivers that use MDB might be more conservative.  Consequently, it has been decided to use the 
MDB approach for AUGUR.  
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Figure 2a&b. The position error and detection probabilities are a function of the unknown satellite bias Bsat. These 
figures show the situations when the unknown bias is replaced by the Minimum Detectable Bias (left hand side) or 
Worst Case Bias (WCB, right hand side). 



 
3. THE LEAST DETECTABLE SATELLITE 

Often, the assumption is made that a satellite failure, when it occurs, is caused by the satellite that has 
the smallest error detection probability. In fact, many researchers have interpreted the following phrase 
out of [DO208] as a demand for this assumption:  
 

“The integrity system shall meet the specified detection probability globally at all times for single 
satellite failures…” 

 
Moreover, the TSO-C129 receiver tests are performed by putting a ramp bias on this least detectable 
satellite and therefore seem to be based on this assumption. Of course, there is no reason why it should 
always be the least detectable satellite that fails, and it should be clear that assuming this leads to an 
overestimation of PHMI and an underestimation of RAIM availability. Still, the assumption is widely 
used and applied [Brown90, Leva96, Sturza90, Lee95, Kelly97], and because of its conservatism, 
AUGUR incorporates it as well.  
 
It remains to determine which of the satellites is ‘least detectable’. All literature references seem to 
agree that the satellite with the highest slope in Figure 2 is the least detectable satellite, as it is this 
satellite that (in the noiseless case) has the worst ratio of position error to test statistic size. Although 
the use of a ‘noiseless’ approximation might not always be justified [Ober98], no other criterion seems 
to be available. AUGUR therefore uses the maximum slope over all satellites as a measure of 
geometric strength. 
 
4. NON-ALGORITHMICAL CONCERNS 

The AUGUR algorithm can obviously differ from receiver implementations. Its results, however, 
might also differ due to use of different parameter settings and to different satellite geometries as 
experienced by different receivers under different circumstances. An overview of such differences is 
presented in this section. 
 
4.1 Parameters settings 

Naturally, implementations can differ in the values chosen for the parameters that have been assumed 
fixed in the discussion in this paper: 
 
• GPS/barometer range accuracy (standard deviation) 
• failure rate of a GPS satellite/barometer 

 
Obviously, higher values of these parameters would lead to a decrease in RAIM availability. The way 
of calibrating the barometer, and the use of filtering of the GPS pseudoranges to reduce noise, 
influence the performance of the algorithm as well. The standard deviation used by AUGUR is 33.3 m 
(from [DO-208]), while the satellite failure rate is set to three failures for the whole GPS constellation 
every 12 months (from [SPS]). This value is more conservative than the rate used in [DO-208], which 
assumes only one failure every 9 months. 
 
4.2 Geometric differences 

Although the GPS satellites possible to be observed are the same for all receivers that are operated at 
the same time at the same geographic position, they might still experience different measurement 
geometries because they track different satellites. Important factors to be considered are: 
 
• mask angle 
• number of satellites tracked for RAIM and positioning 
• criteria used for subset selection: [DO208] proposes to select 5 satellites based on best accuracy 

considerations, while other sources [Graas93] propose a best integrity criterion instead. Other 



criteria could be used as well. 
• the possible use of barometric aiding 

 
Note that the number of satellites tracked during operation might also change for different flight levels 
and bank angles. 
 
5. THE AUGUR ALGORITHM IN SUMMARY 

As shown above, RAIM algorithms can differ in a couple of ways. The algorithms can be either chi-
squared or maximum residual based. Furthermore, two different methods for substitution of the 
unknown bias in case of a satellite failure can be exploited, based on either a minimal detectable or a 
worst case bias principle. Often, computations are simplified by assuming that it is always the least 
detectable satellite that fails, effectively representing the geometry by the slope of the worst case 
satellite only, although this results in conservative availability figures.  
 
AUGUR uses the most conservative combination of design choices, and combines the chi-squared 
detection algorithm with the least detectable satellite failure assumption. Due to computational 
limitations, it uses the minimal detectable bias principle – which for the particular application is more 
conservative than the worst case bias figures used by the ARP algorithm. Because all choices in the 
algorithm design are described in many references from open literature, the final result is expected to 
be conservative without degrading the RAIM availability to an unreasonable extent, and therefore in 
line with both the JAA requirements and the end-user’s desires.  
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