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ABSTRACT 
 
System Integrity concerns “the ability of a system to provide timely warnings when the system should 
not be used because it possibly does not operate within specifications”. An autonomous integrity 
monitor (AIM) measures this ability. In the navigation world, AIM is traditionally identified with ‘error 
detection’. Given the definition of integrity, AIM should rather be identified with ‘error detectability’ 
instead. This basic misunderstanding sometimes complicates insight in AIM performance. Moreover, 
current AIM formulations address detection of measurement errors rather than position errors. As a 
result, AIM performance is often specified in the power of detecting measurement errors, instead of 
the position errors on which Required Navigation Performance parameters are based.  
 
Rather than elaborating on AIM mathematics, this paper shows the concepts behind the computation 
of AIM performance in the position domain, and explains which assumptions have to be made. 
Understanding of these concepts, and awareness of the assumptions, will provide the reader with a 
suitable framework to judge the value of AIM performance studies with their inherent limitations. 
 
 
1. INTRODUCTION 
 
Users of navigation systems need to be warned when the system can not be guaranteed to be 
working within the required specifications. Integrity is the ability of a navigation system to provide the 
user with such warnings, and is in fact nothing but the power of the system to detect errors. 
An integrity monitoring system usually consist of two parts [Ober96] (see figure 1): 
  

• The error detector will warn the user in case of system errors. It computes a test statistic T that 
grows with the mutual inconsistency of the navigation signals. If the test statistic surpasses a 
certain threshold TThreshold, an error is detected and the user is shown a red light. 

 
• The error detectability monitor determines whether sufficient detection power is available. If the 

system lacks detection power, and the probability that a position error remains undetected 
(PMD) becomes too high, the user is shown a yellow light. The yellow light is also shown when 
the probability that a false detection is generated (PFD) is unacceptably large. 

 
When we consider the definition of integrity, it should be clear that the error detectability monitor is the 
actual integrity monitor. However, because 'error detectability' is only meaningfully defined in 
combination with a certain error detector, the latter is generally assumed to be an integral part of the 
monitor as well. 
 



In this paper, we will focus on Autonomous Integrity Monitoring (AIM), a technique that uses 
redundancy of the signals used in the position computation to extract information on error 
characteristics. Two different variants exist: Receiver AIM (RAIM) uses signals from one system 
(usually GPS) only, Aircraft AIM (AAIM) includes information from other sensors as well. When all 
sensors are fully integrated and used in the position solution, there is no fundamental difference, and 
we will use the generic term 'AIM' in this paper. 
After the introduction of the system model in section 2, we will discuss computation of three types of 
information that the navigation system should provide: position information in section 3, error 
information in section 4, and integrity information in section 5. Section 6 concludes with a short 
summary. 
 
 
2. SYSTEM DESCRIPTION 
 
We will assume that the relation between the measurements that the navigation system provides, and 
the actual position of the user, is given by an overdetermined linear regression model with n 
measurements in m unknowns (n>m): 
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in which: 
z
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 : n-vector of measurements 
H  : n × m observation matrix  
x
r

: m-vector of unknowns (usually position, clock bias) 
νv  : n-vector with independent noise and biases in the measurements 
A usual assumption is that the noise is normally distributed with mean νµ

r
 and covariance Rν: 
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When the mean of the noise νµ

r
 is nonzero, it will be called the measurement bias. 

 
We would like to extract three types of information from the navigation system: 
 
• the unknown position (positioning) 
• the possible presence of position errors (error detection) 
• the detectability of position errors (AIM performance) 
 
We will discuss computation of each of these in the coming sections. 
 
 
3. POSITION ESTIMATION 
 
When the noise is normally distributed, the estimated position is simply computed by Weighted Least 
Squares (WLS): 
 

Figure 1. An Integrity Monitor with its input and output signals 
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with 111 )( −−−= νν RHHRHN TT . Due to noise and biases in the measurements, LSx̂

r
 will differ from the 

exact position. This is acceptable as long as the error in the position remains within the boundaries set 
by the Required Navigation Performance (RNP). A warning should be generated when the position 
error might be out of bound. Therefore, when the position error is defined as 
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and the error allowed by the RNP is denoted by xRNP ˆ∆ , we would like to know which of the following 
hypotheses is true:  
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When there is an excessive probability that H1 is true, it is likely that there is an error in the system, 
and a red light should be shown to the user. 
 
To decide among these hypotheses we will have to find some test statistic T that gives an indication 
about the position error. This test statistic can be used together with a threshold TThreshold in a decision 
scheme that will look something like this: 
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Using a decision criterion such as (3.4), it can happen that we accept the wrong hypothesis. The two 
possible decision errors that can be made are called missed detection (accepting H0 unjustly) and 
false detection (accepting H1 unjustly). The probabilities of missed and false detection (PMD and PFD) 
determine how well position errors can be detected based on a decision involving T. When these 
probabilities become too high, the user can not trust the error detection scheme sufficiently, and an 
orange light should be issued. 
 
Therefore, PMD and PFD are the parameters that measure AIM performance, and we would like to 
compute them along with the position and error estimates. We will discuss this computation in section 
5. First, we have to consider the choice of the test statistic T. 
 
 
4. ERROR DETECTION USING THE LEAST SQUARES RESIDUAL 
 
The position error depends on the unknown noise and biases in the system. When there is 
redundancy in the system, it is possible to estimate the noise and biases ν

r
 from the least squares 

residual [Rao95]: 
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with 111 )( −−−−= νν RHHRHHID TT .  
 
The estimated noise is a natural basis for error detection1, and in this section we will therefore 
investigate the relation between the least squares residual and the position error. 
 
                                                 
1 In fact, all possible test statistics are necessarily a function of the least squares residual, see for 
example [Lehmann86] 



The first and most important relation between residual and position error is their orthogonality, that is 
due to the orthogonal projection that the least squares scheme performs. The spaces in which the 
position error and the residual lie are orthogonal in the sense that: 
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which can readily be verified by substituting (3.2) and (4.1) in (4.2). This implies that the noise and 
bias vector ν

r
 can be decomposed in two orthogonal components: one that influences only the 

position error, and one that influences only the residual: 
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Moreover, due to the orthogonality and the independent normal distribution of the elements of 

r
ν , 

posNνr  and resDνr  are statistically independent [Johnson72], and contain no mutual information 
[Jones79]. 
 
The situation is depicted in figure 2 and figure 3 (for simplicity, we used 2 measurements in only 1 
unknown). The position error space and the residual space are depicted as orthogonal subspaces of 
the ‘measurement noise’ space. The two-dimensional Gaussian distribution of the measurement 
noise, and the one-dimensional Gaussian distributions of position error and residual are drawn 
symbolically as well.  
 

The inevitable conclusion seems to be rather discouraging: the residual doesn’t tell us anything about 
the position error. Still, we claim it can be used in error detection. To understand why, we will have to 

 
 
Figure 2. Noise during normal system operation: measurement noise is two-
dimensional Gaussian, position error and residual are one-dimensional Gaussian 



distinguish between two ‘types’ of errors. The first type is the one that occurs during normal operation 
of the system, and is caused by noise only. The second type is the one that is caused by anomalies in 
the system, and is caused by a combination of noise and biases. 
 
During normal operation, each measurement source provides essentially unbiased measurements2 
that contain only ‘random’ errors. This was the situation of figure 2. When one of the measurement 
sources starts to operate according to a model that deviates from the assumed one, its measurement 
errors will either get biased, more noisy, or both. When looking at a single sample, these effects can 
not be distinguished, and we will therefore consider the occurrence of a bias only. 
Unlike the noise, that is stochastic, biases are deterministic in character. In general, they will have 
components in both the ‘position error space’ and the ‘residual space’. These components will be 
perfectly correlated. This means that it will be possible to detect such biases from the residual, as long 
as they are significant with respect to the noise.  
 
Detection of a measurement bias from noisy measurements is a problem that has been extensively 
studied in literature [Basseville93]. It is usually formulated as the hypotheses testing problem of 
deciding among: 
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Note that this is not the same detection problem as the one that we started out with! This is something 

 
Figure 3. The noise can be decomposed in two independently distributed
components that influence position only ( posNνr ) and residual only ( resDνr ) 



that is often overlooked, and sometimes the probabilities of missed and false detection belonging to 
problem (4.4) are presented as the performance parameters of AIM [Leva96, Brown96]. However, 
RNP explicitly requires that AIM performance is expressed in terms of positioning errors, and should 
therefore relate to (3.3). We will show how we can compute this performance in the next section. 
 
 
5. AIM PERFORMANCE (ERROR DETECTABILITY)  
 
For a given measurement bias, it is relatively easy to compute the probability we will detect it, and the 
probability that it will cause a position error. The larger the bias becomes, the easier it becomes to 
detect it, but the likelier it gets that it causes a position error. Unfortunately, we will have to work with 
limited knowledge on the measurement bias. This section will focus on the use of this knowledge to 
compute upperbounds on the probability of missed detection of a position error3, and will clarify which 
assumptions have to be made to be able to do so. 
 
The probability that a bias )(i
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r

causes a missed detection is the probability of a coincidence of three 
events: 
 
1. a bias )(i
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 is present 

2. )(i
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 causes a position error 

3. )(i
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 does not cause a detection 
 
When we introduce the following notations: 
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and exploit the independence of Ppos_error and Pno_detection , the probability of missed detection due to a 
bias 

r
µν

( )i  can be written as: 
 

)()()()( )(
_

)(
_

)()( i
errorpos

i
detectionno

i
bias

i
MD PPPP νννν µµµµ

rrrr
⋅⋅=  (5.1) 

 
Because the bias )(i

νµ
r

 will be unknown, we can never compute exact values of PMD. Often, all we can 
do is determining its worst case value.  
 
Unfortunately, no full knowledge of )( )(i

biasP νµ
r

 can be assumed available: we simply don't know how 
likely it is for a certain bias to occur. Usually, limited knowledge can be assumed to be present on the 
probability that a certain type (class) of biases occurs. The most well known class is the ‘single failure 
in measurement i ’ class, in which it is assumed that a bias occurs in measurement i only. In this class, 
every bias vector therefore has the form: 
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From the design parameters of GPS, the probability of failure of a single satellite Psingle_failure can be 
deduced [Shively93], and for this particular class of biases we can therefore set 

                                                                                                                                                      
2 Note that this is not exactly true for some error sources such as Selective Availability. We plan to 
address this problem in a future paper. 
3 AIM performance also includes the false detection probability, for which the exact same line of 
reasoning is applicable. We will therefore limit the discussion to missed detections only. 
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This leaves us with the maximization of the missed detection probability over all possible biases in 
measurement i. This maximum is reached when the product of Ppos_error and Pno_detection is as large as 
possible, and can be found by standard function maximization algorithms, as has been discussed 
recently in [Lee95, Kraemer97, Ober97].  These algorithms maximize the probability content of the 
'missed detection' area in figure 4, over all biases )(i

νµ
r

 in the class. 
 
Although 'the single failure in measurement i ' is the most widely used class, the same approach can 
be used for other classes of bias, for example: 
 
• simultaneous failures in measurement i and j 
• all biases that obey αµν ≤

r
 (multipath and maybe interference could be modeled this way) 

•  no failure (normal system operation) 
• combinations of the classes above 
 
Note that the ‘no failure’ class only contains the bias vector 0)( =i

νµ
r

, which makes explicit 
maximization unnecessary. 
 
When we use the notation 
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for the maximum (conditional) probability that a bias in class Mi  causes an undetected position error, 
we can finally compute a worst case 'overall' probability of a missed position error detection, by 
summing over all classes of biases that should be considered4: 
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This value should then be compared to the missed detection probability that is specified by the 
Required Navigation Performance standard. 
 
 
6. CONCLUSION 
 
In this paper, we have discussed the computation of the probability that a position error remains 
undetected, which is the main performance parameter of an Autonomous Integrity Monitor. We have 
also shown that this probability differs from the often-used probability that a measurement bias 
remains unnoticed. 
 
One of the goals of this paper has been, to make all necessary assumptions to compute AIM 
performance explicit. In short, these assumptions are: 
 
• during normal system operation all measurements are unbiased, that is, 0

rr
=νµ   

• all biases that can occur belong to certain mutual exclusive classes, that have an (approximately) 
known probability of occurrence 

• the 'worst case' bias is taken to be representative for the whole class, as long as no additional 
knowledge on distributions within a class is available 

                                                 
4 assuming that the classes of biases are mutual exclusive, that is, each bias can belong to at most 
one class 
 



 
It is clear that any figures for missed and false detection probabilities heavily rely on the correctness of 
all these assumptions. On the one hand, worst case biases are taken, which might give pessimistic 
values for PMD and PFD . On the other hand, we should take care that the probability that a bias in a 
certain class occurs is not underestimated, and that no classes of biases are left out of the analysis.  
 
Understanding of the inherent limitations will enable fair judgment of the value of studies into AIM 
performance, and should provide a framework for setting up new studies as well. 
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